首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In this paper we report syntheses of F-alkyl compounds such as RFC2H4S(O)nCH2Z (with n=0,2 and Z=H,Ø(C6H5),COØ,COOEt,COCH3,CN). Using the carbanionic reactivity of these compounds, we would like to use them as precursors of surfactants, grafting hydrophilic functions on the carbons α or α′ to the sulfur atom. The compounds were not very reactive. Alkylation or acylation on this site could only be obtained with a ‘pseudo malonic’ CH2 (RFC2H4SO2CH2Z with Z=COØ, COOEt,COCH3,CN). Only methyl iodide and acetyl chloride led to positive results.  相似文献   

2.
The reactivity of perfluoroalkenylmagnesium bromides RFCFCFMgBr (RFC4F9, C6F13), obtained from the corresponding l-bromo-perfluoroalkenes, has been investigated.These Grignard reagents react with carbonyl compounds to give, with good yields, a series of new α-β unsaturated polyfluorinated alcohols RFCFCFC(OH)RR′ (1). The synthesis and spectrographic characteristics of these compounds are reported and discussed.Perfluoroalkenyl mercuric and tin derivatives are obtained from the reaction of the perfluorinated Grignard reagents with mercuric salts and organotin halides respectively :
Spectroscopic identification and some chemical properties of these new perfluorinated organometallic compounds are given.The good reactivity of these unsaturated derivatives towards protic acids and electrophiles, leading to the cleavage of the perfluoroalkenyl group, is used to study the possibilities of transmetallation reactions.Somes examples of these reactions are reported.  相似文献   

3.
Metallation of thiols RFC2H4SH followed by alkylation with iodides R′FC2H4I leads either to symmetrical or to unsymmetrical sulphides RFC2H4SC2H4R′F (with RF=R′F or RF ≠ R′F). All compounds obtained are good solvents of gases (particularly O2, CO, CO2, N2).This property allows their application as biological carriers of dissolved gases.  相似文献   

4.
Several fluorinated allylic ethers, thioethers and diethers have been prepared in excellent yields by phase transfer catalysis (CTP). The used halogenated compounds are allyl chloride and bromide, p-chloromethylstyrene. The used fluorinated alcohols are aromatic pentafluorophenol and various aliphatics: CF3CH2OH, CF2HCF2CH2OH ClCF2CF2CH2OH,C6F13C2H4OH, HOCH2CF2CFClCF2CH2OH and HOC6H4C(CF3)2C6H4OH. All these new compounds have been characterized by 1H and 13C NMR. We conclude that CTP is the best method to obtain allylic and diallylic compounds.  相似文献   

5.
Bis(fluorbenzoyloxy)methyl phosphane oxides CH3P(O)[OC(O)R]2 [R = C6H42F (1), C6H43F (2), C6H44F (3), C6H32,6F2 (4), C6H2,3,5,6F4 (5)] were prepared by treating silver salts of carboxylic acids AgOC(O)R with CH3P(O)C?2 (IR-, 1H-, 19?F-and 31P{1H}-NMR-data). The mixed anhydrides 1–5 show unusual thermal stability at room temperature. Stability against hydrolysis decreases with increasing number of fluorine-atoms. The reaction of R′P(O)C?2 [R′ = CH3, C6H5, (CH3)3C] with MIOC(O)RF [RF = CF3, C2F5, C6F5; MI = AgI, NaI T?I] was investigated.  相似文献   

6.
Structures of New Bis(pentafluorophenyl)halogeno Mercurates [{Hg(C6F5)2}3(μ‐X)] (X = Cl, Br, I) From the reactions of [PNP]Cl or [PPh4]Y (Y = Br, I) with Hg(C6F5)2 crystals of the composition [Cat][{Hg(C6F5)2}3X] (Cat = PNP, X = Cl ( 1 ); Cat = PPh4, X = Br ( 2 ), I ( 3 )) are formed. 1 crystallizes in the triclinic space group P1¯, 2 and 3 crystallize isotypically in the monoclinic space group C2/c. In the crystals the halide anions are surrounded by three Hg(C6F5)2 molecules. The reaction of [PPh4]Br with Hg(C6F5)2 under slightly changed conditions gives the compound [PPh4]2[{Hg(C6F5)2}3(μ‐Br)][{Hg(C6F5)2}2(μ‐Br)] ( 4 ).  相似文献   

7.
In this paper the regiospecific synthesis of new amino-3 (-5)pyrazoles substituted, by a long perfluoroalkyl chain (C7F15) in the 5 or 3 position is reported. These compounds were obtained by condensation of a hydrazine (substituted or not) with a 2-F-alkyl propynonitrile (RFCCCN). This reaction gives only one isomer. Each isomer (amino-3 pyrazole or amino-5 pyrazole) was identified by 1H N.M.R. and 19F.N.M.R.  相似文献   

8.
The complex [uRh(oq)Br(P(o-Cu6F4)Ph2)(H2O)]2 is obtained by refluxing a solution of Rh(oq)(CO)(P(o-BrC6F4)Ph2) (oq = 8-oxyquinolinate) in toluene. The structure of this compound has been determined by X-ray diffraction and refined to R = 0.061 and Rw = 0.065 factors. The cell has monoclinic symmetry, space group P21/n; a 19.513(2), b 17.049(1), c 16.898(1) Å and β 99.69(1)°. The structure consists of two independent Rh(oq)Br(P(o-C6F4)Ph2)H2O) units linked by hydrogen bonds between the coordinated water molecules and oq ligands to form a distorted boat (six atom ring of junction between the two units). In each unit the metal atom has a distorted octahedral coordination, with a four-atom metallocyclic ring (uRhPCCu) with CRhP and RhPC angles 69.3(2) and 85.3(3)°, respectively, in one unit, and 70.0(2) and 81.1(2)° in the other. The water molecule is readily displaced by a variety of phosphorus donor ligands to form the complexes uRh(oq)Br(P(o-Cu6F4)Ph2)P′, P′ = PPh3, P(p-CH3C6H4)3 and P(OCH3)3, in which the P atoms are in trans-dispositions.  相似文献   

9.
New Syntheses and Crystal Structures of Bis(fluorophenyl) Mercury, Hg(Rf)2 (Rf = C6F5, 2, 3, 4, 6‐F4C6H, 2, 3, 5, 6‐F4C6H, 2, 4, 6‐F3C6H2, 2, 6‐F2C6H3) Bis(fluorophenyl) mercury compounds, Hg(Rf)2 (Rf = C6F5, C6HF4, C6H2F3, C6H3F2), are prepared in good yields by the reactions of HgF2 with Me3SiRf. The crystal structures of Hg(2, 3, 4, 6‐F4C6H)2 (monoclinic, P21/n), Hg(2, 3, 5, 6‐F4C6H)2 (monoclinic, C2/m), Hg(2, 4, 6‐F3C6H2)2 (monoclinic, P21/c) and Hg(2, 6‐F2C6H3)2 (triclinic, P1) are described.  相似文献   

10.
The lithium polyfluorobenzenesulphinates, Li O2SR (R = C6F5, p-HC6F4, m-HC6F4, or o-HC6F4), and the dilithium tetrafluorobenzenedisulphinates, p- and o-(LiO2S)2C6F4, have been prepared by reaction of the appropriate polyfluoroaryllithium compounds with sulphur dioxide. All compounds were isolated as hydrates and gave the corresponding S-benzylthiouronium salts on treatment with S-benzylthiouronium chloride. From reactions of the lithium sulphinates with suitable mercuric salts in water, generally at room temperature, the derivatives RHgX (R = C6F5, X = Cl, Br, CH3CO2, or PhSO2; R = p-HC6F4, X = Cl, Br, or CH3CO2; R = m-HC6F4, X = Cl or Br; R = o-HC6F4, X = Cl), p-(XHg)2C6F4 (X = Cl, Br, or CH3CO2), and o-(XHg)2C6X4 (X = Cl or Br) have been prepared. Similarly, the bispolyfluorophenylmercurials R2Hg (R = C6F5, p-HC6F4, or m-HC6F4) have been prepared from the corresponding lithium sulphinates and either mercuric salts or polyfluorophenylmercuric halides in aqueous t-butanol. A possible mechanism for the sulphur dioxide elimination reactions is discussed.  相似文献   

11.
The main thermal decomposition path for mercuric 2,6-disubstituted benzoates, (RCO2)2Hg (R = 2,6-X2C6H3; X = F, Cl, Br, or Me), can be varied considerably. In boiling dimethyl sulphoxide, decarboxylation occurs giving the corresponding diarylmercurial (X = F or Cl) or RHgO2CR derivative (X = Me or Br). There is considerable competition from reaction of the mercuric salt with the solvent in the last three cases. With boiling pyridine as medium, the 2,6-difluorobenzoate yields a mixture of R2Hg and RHgO2CR derivatives, but the 2,6-dichlorobenzoate only gives (RCO2)2Hg(py)2. Thermal decomposition of the mercuric benzoates under vacuum yields the carboxylic acids and complex mercuration products, mainly based on 3-mercurated 2,6-disubstituted benzoates, with partial additional mercuration and/or decarboxylation. Pyrolysis of mercuric 2,6-dichlorobenzoate at atmospheric pressure results in both mercuration and decarboxylation, giving m-dichlorobenzene as the main volatile product and a complex mercurial with 1,3-dimercurated-2,6-dichlorobenzene repeating units and 2,6-dichlorophenyl terminal groups.  相似文献   

12.
Nucleophilic aromatic substitution reactions of C6F6, C6XF5 (XH, Cl, Br), C6H2F4, oC6H4FNO2 and pC6H4FNO2 by the fluoride anion were studied in DMSO utilizing fluorine-18. Substitution of fluorine by fluorine-18 is the only reaction observed with a C6F6 substrate. With other substrates fluorine substitution is predominant. The kinetic studies provide results consistent with a SNAr two step mechanism and suggest an intermediate analogous to that for electrophilic aromatic substitution. Consideration of σ? indicates consistency with methoxide ion substitution results with similar substrates. The possible utility of these reactions in labeling aromatic compounds is noted.  相似文献   

13.
Preparation and Vibrational Spectra of Alkyl- and Arylboronhalides Organohaloboranes RmBX3?m (R = CH3, C2H5; X = Cl, Br; m = 1–3) can be prepared from BX3 and tetraalkyllead as alkylating agent Data of the vibrational spectra (i.r. and Raman) of RnBY3?n (Y = F, Cl and Br; n = 1–3) and C6H5BY2 are tabulated and assigned. Mixed halides i. e. RBXY compounds are spectroscopically characterized.  相似文献   

14.
Saturated and benzylic organomagnesium compounds are shown to readily undergo addition reactions with the conjugated enynes HC4C3CH2C1HCH2R′, with R′ = alkyl, OH, OC4H9, NHC25, N(C2H5)2, by refluxing for several hours in benzene or toluene.This reaction leads to both υ-acetylenic compounds (1,2-addition) and β-allenic compounds (1,4-addition).  相似文献   

15.
The preparations of CH2SF4 and CH3CHSF4 are presented and the structures are discussed. Addition reactions of polar species give a wide range of new compounds, like Hg(CH2SF5)2, F4AsCH2SF5, cisBrSF4CH3, cisF5SeOSF4CH2Br, a.o. While CH2SF4 decomposes at room temperature slowly to CH2CH2 and SF4, at high temperatures HF and CSF2 are formed. CH3CHSF4 gives mainly CH3CHF2 at room temperature. The “saturated” compounds CH3SF5 and C2H5SF5 have been prepared. They react with SbF5 in SO2 at low temperatures to form the cations CH3SF4+ and C2H5SF4+. The CH3SF4+ ion has been investigated in detail by nmr methods at low temperatures. It decomposes to CH3 and SF4, which react further in the SO2/SbF5 system to CH3OSO+ and SF3+.  相似文献   

16.
K2Br(OH) and Rb2Br(OH): Two New Ternary Alkali Metal Halide Hydroxides with a Pronounced Structural Relationship to KOH resp. RbOH Two isotypic compounds K2Br(OH) and Rb2Br(OH) were prepared in the systems KOH/KBr and RbOH/RbBr. Their structures were determined by single crystal X-ray methods: K2Br(OH): P21/m, Z = 2, a = 6.724(1) Å, b = 4.272(4) Å, c = 8.442(2) Å, β = 108.14(2)°, Z(Fo) = 651 with (Fo)2 ≥ 3σ(Fo)2, Z(parameter) = 28, R/Rw = 0.041/0.047 Rb2Br(OH): P21/m, Z = 2, a = 6.918(3) Å, b = 4.483(2) Å, c = 8.850(5) Å, β = 108.08(6)°, Z(Fo) = 326 mit (Fo)2 ≥ 3σ(Fo)2, Z(parameter) = 27, R/Rw = 0.074/0.082. The compounds are built up by chains of [M2(OH)+] connected via Br?. The structure of the chains as well as their orientation to one another show a pronounced relationship to the structures of the room temperature modifications of the isotypic binary hydroxides KOH and RbOH.  相似文献   

17.
The synthesis and mechanism of formation of phosphonium salts of the type [R3P+CFXY]Z? (where X = F, Cl, Br; Y = Br, Cl; Z = Br, Cl), bis-phosphonium salts of the type [R3P+CF2P+R3]2Br?, and phosphoranium salts of the type [R3P+C?FP+R3]X? (X = Br, Cl) will be presented. The applicability of these substrates in the generation of useful nucleophilic or electrophilic synthetic intermediates will be discussed.  相似文献   

18.
Cyclic Diazastannylenes. XXXII. On the Synthesis and Reactivity of Difunctional Cyclosilagermadiazanes—Formation of Digermanes The cyclic bisaminostannylene Me2Si(t-BuN)2Sn 1 reacts with tetrahalides of germanium GeX4(X = Cl, Br, I) forming the bisaminodihalogengermanes 2a, 2b and 2c. The halogen atoms of the compounds 2 may be substituted by alkyl-, amino- and pseudohalide groups: Me2Si(t-BuN)2GeXY (X = Y = N3 3 ; X = Br, Y = Me 4 , Y = t-Bu 6 , Y = N(SiMe3)2 8a , Y = NEt2 9 ; X = Me, Y = N3 5a , Y = CN 5b ; X = N3, Y = t-Bu 7 , Y = N(SiMe3)2 10 ; X = I, Y = N(SiMe3)2 8b ). Reduction of the compounds 2b and 4 with sodium naphthalide generates the digermanes (Me2Si(t-BuN)2GeR)2 (with R = Br 11 , R = Me 12 ) Compound 8b crystallizes in the monoclinic space group P21/c with Z = 8 and lattice constants a = 16.205(8), b = 19.854(9), c = 17.537(9) Å, β = 107.50(9)°. Compound 11 crystallizes in the triclinic space group P1 with Z = 2 and lattice constants a = 8.921(4), b = 11.091(5), c = 17.590(8) Å, α = 80.5(1), β = 89.2(1), γ = 71.4(1)°.  相似文献   

19.
The reactions of sodium ethoxide in ethanol with various fluoroaromatics, C6F6?nHn, C6F5?nHnNO2, C6F5X (X = CF3, C6F5, COCH3, CH2Br), C6Cl6 and mH2C6Cl4 have been studied. Partial substitution of the aromatic halogen was observed. The new products have been characterized by elemental analysis, NMR (H?1 and F?19), infrared and mass spectroscopy.  相似文献   

20.
Syntheses and Properties of Perfluoroorgano Esters of the Diethyldithiocarbamic Acid, (C2H5)2NC(S)SRf (Rf = CF3, C2F5, i‐C3F7, n‐C4F9, C6F5) Tetraethylthiuram disulfide reacts under different conditions with perfluoroorgano silver(I), AgRf, and perfluoroorgano cadmium compounds, Cd(Rf)2, to give the corresponding perfluoroorgano esters of diethyldithiocarbamic acid, (C2H5)2NC(S)SRf (Rf = CF3, C2F5, i‐C3F7, n‐C4F9, C6F5), and metal diethyldithiocarbamates, AgSC(S)N(C2H5)2 and Cd[SC(S)N(C2H5)2]2. The mechanisms of the reactions with AgRf and Cd(Rf)2 are discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号