首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Complexes (C6F5)2CoL2 (L2 = 2 PEt3, 2 P-Bu3, 2 PPh3, Ph2PCH2CH2PPh2) have been obtained by adding the relevant ligands to solutions of (C6F5)2Co(dioxane)2. The cis and trans isomers have been separated and identified for the complexes having L = PEt3 or PnBu3. Structural and chemical behaviour for all the complexes is described.  相似文献   

2.
Treatment of Au2(Ph2PCH2CH2PPh2)Cl2 with one equivalent of the [Ru5C(CO)14]2− dianion in the presence of TlPF6 gives Ru5C(CO)14Au2(Ph2PCH2CH2PPh2) (1) in good yield and the [{Ru5C(CO)14}2Au2(Ph2PCH2CH2PPh2)]2− (2) anion in low yield. Complex 2 becomes the major product if 2 equivalents of [Ru5C(CO)14]2− are used. Reaction of [Au2(Ph2PCH2CH2PPh2)Cl2] with 3 equivalents of [H3Os4(CO)12] anion in the presence of TlPF6 affords {H3Os4(CO)12}2Au2(Ph2PCH2CH2PPh2) (3) in reasonable yield. X-ray diffraction studies of 1 and 3 show that they contain the [Au2(Ph2PCH2CH2PPh2)]2+ fragment in different coordination modes.  相似文献   

3.
Evidence for (η5-C5H5)Fe(Ph2PCH2CH2PPh2)(CHO) as an intermediate in the reduction of [(η5-C5H5)Fe(Ph2PCH2CH2PPh2)CO]PF6 to (η5-C5H5)Fe(CO)H(Ph2PCH2CH2PPh2) and for a metal-carbonyl hydride-formyl equilibrium is described.  相似文献   

4.
Reduction of various pentafluorophenylnickel(II) complexes in the presence of phosphines gives unstable nickel(I) compounds but Ni(C6F5)(CO)2(PPh3)2 is isolated in the presence of CO. Similar NiR(CO)2(PPh3)2 (R = C6F5,C6Cl5, 2,3,5,6-C6Cl4H) are obtained by reaction of the halogenonickel(I) complex with MgRBr or LiR. Reduction of NiX2L2 in the presence of acetylenes gives [NiXL2]2(μ-PhCCR) (R = H, X = Cl and R = Ph, X = Cl, Br) when L = P-n-Bu3 but only NiX(PPh3)3 are recovered when L = PPh3. No reaction with the alkyne is observed for [NiX(PPh3)2]n but [NiCl(PPh3)]n reacts with RCCR′ to give paramagnetic NiCl(PPh3)(CRCR′) (R = Ph, R′= H, COOEt), diamagnetic [NiCl(PPh3)]2(μ-PhCCPh) and cyclotrimerization when R = R′ = COOMe. Chemical and structural behaviour of the new nickel(I) complexes is described.  相似文献   

5.
The title compounds, Mo(CO)2(Ph2PCH2PPh2)(Ph2PCH2CH2PPh2), Mo(CO)2(dppm)(dppe) 1, and Mo(CO)2(Ph2PCH2CH2PPh2)(Ph2PCH = CHPPh2), Mo(CO)2(dppe)(cis-vpp) 2, were prepared from Mo(CO)6 and the corresponding bidentate diphosphine ligands in n-decane under nitrogen atomosphere. Crystals of 1 are monoclinic, space group P 21/c, with a = 19.072(3), b = 11.348(3), c = 23.57(1) Å, β = 99.64(3)°, Z = 4, and the final residual R(F) = 0.044 for 4810 observed reflections; data of 2 are triclinic, space group P 1, with a = 12.091(3), b = 12.186(8), c = 18.934(5) Å, α = 96.93(4),β = 108.15(2), γ = 107.08(4)deg;, Z = 2, and the final residual R(F) = 0.058 for 4570 observed reflections. The distortion of compound 1 is more pronounced than that of compound 2, The two Mo-P lengths in the same bidentate chelate ligand for both compounds are different. Among them, the two larger Mo-P bond lengths for compound 2 are similar, but significantly different for 1.  相似文献   

6.
Summary The tetrahedral compounds [Co(SC6F5)2L] (L=Ph2P(CH2) n PPh2,n=1, 2 and 3) and the squareplanar compound [Ni(SC6F5)2(PhPCH2CH2PPh2)] have been obtained by mathematical reactions of [MX2L] (M=Co or Ni, X=Cl or Br) and Pb(SC6F5)2. The reaction of pentacoordinate [CoCl(Ph2PCH2CH2PPh2)2]+ and the lead salt yields [CoCl2L] and [Co(SC6F5)2L]. Magnetic moments, u.v. data (both in solution and solid state) and the crystal and molecular structure of the nickel compound are reported.  相似文献   

7.
The cationic ruthenium complexes [(η5-C5H5)Ru(Ph2PCH2CH2PPh2)L]PF6 (L=olefin, CO, pyridine or acetonitrile) have been prepared by treatment of (η5-C5H5)Ru(Ph2PCH2CH2PPh2)Cl with L and NH4PF6 in methanol of 20°C.  相似文献   

8.
Low valent metal species: (Ph2PCH2CH2PPh2)Ni0, (Ph3P)2Pd0, (Ph3P)2Pt0, η5-C5H5 CoI and (CH3)2SnII insert into the SS bond of (μ-S2)Fe2(CO)6 under mild conditions. Identical products were obtained by reactions of the dianion, [(μ-S2)Fe2(CO)6]2? with the corresponding metal chlorides.  相似文献   

9.
Ru(C5H5)(CO)2H, prepared in situ from Ru3CO)12, reacts with bisphosphines L2 to give Ru(C5H5)L2H quantitatively [L2 = Ph2P(CH2)nPPh2n = 2 or 4; L2 = (R)-Ph2PCH2CH(Me)PPh2].  相似文献   

10.
CpFe(CO)I(η1-Ph2PCH2P(O)Ph2) 2 was obtained in small yield from reaction of [CpFe(CO)]2[μ-(Ph2P)2CH2] with diiodine in benzene, or prepared in 82% yield on treating CpFe(CO)I(η1-Ph2PCH2PPh2) 1 with H2O2. Compound 2 crystallizes in the space group P21/n, with a = 8.441(2) Å, b = 10.054(2) Å, c = 33.343(8) Å, β = 92.33(2)°, Z = 4, V = 2827(1) Å3, RF = 0.057, and Rw = 0.056.  相似文献   

11.
Reaction of [(η-C7H7)Mo(CO)3][PF6] and [(η-C5H5)Fe(CO)2CH3CN][PF6] with ditertiary phosphine ligands afforded products of three types; the monosubstituted complexes [(Ring)M(CO)2Ph2P(CH2)nPPh2][PF6] (Ring = η-C7H7, M = Mo, N = 1; Ring = η-C5H5, M = Fe, N = 1 and 2), the chelated complexes [(Ring)M(CO)Ph2P(CH2)nPPh2][PF6] (Ring = η-C7H7, M = Mo, N = 1 and 2; Ring = η-C5H5, M = Fe, N = 1 and 2), and the dinuclear complex [{(η-C7H7)Mo(CO)2}2 -μ- Ph2PCH2CH2PPh2][(PF6)2]. Spectroscopic properties, including 31P NMR, are reported.  相似文献   

12.
Fe(cot)2 (cot = cyclooctatetraene) reacts with certain phosphines and phosphites to give Fe(cot)L3 compounds in good yield. Reaction of Fe(cot)2 with Ph2PCH2CH2PPh2 under N2 gives a complex containing coordinated dinitrogen, which is converted into Fe(cot)(Ph2PCH2CH2PPh2)(CO) on reaction with CO or formate esters.  相似文献   

13.
Compounds of the type [XM(CO)2(ν-allyl)L2] (where X = Cl and Br; M = Mo and W; L2 = Ph2PCH2PPh2 and Ph2 PCH2CH2PPh2) have been prepard from the corersponding MeCN complexes. The spectral properties of these compounds and the effects of chelate rign size on 31P coordination shifts and J(183W—31P) have been investigated.  相似文献   

14.
A reaction of the potassium salts of RC(S)NHP(S)(OiPr)2 (R = PhNH, HL I; Ph, HL II) with a mixture of AgNO3 and Ph2P(CH2)1 − 3PPh2 or Ph2P(C5H4FeC5H4)PPh2 in aqueous EtOH/CH2Cl2 leads to [Ag2(Ph2PCH2PPh2)2LINO3] ( 1 ), [Ag{Ph2P (CH2)2PPh2}LI,II] ( 2, 6 ), [Ag{Ph2P(CH2)3PPh2}LI,II] ( 3, 7 ), [Ag{Ph2P(C5H4FeC5H4)PPh2}LI,II] ( 4, 8 ), and [Ag2(Ph2PCH2PPh2)LII2] ( 5 ) complexes. The structures of these compounds were investigated by 1H and 31P{1H} NMR spectroscopy and elemental analyses. It was established that the binuclear complexes 1 and 5 are luminescent in the solid state at ambient conditions. © 2010 Wiley Periodicals, Inc. Heteroatom Chem 21:386–391, 2010; View this article online at wileyonlinelibrary.com . DOI 10.1002/hc.20627  相似文献   

15.
The (hydroxo) methyl complex Pt(OH)(CH3)(Diphos) [Diphos = Ph2PCH2CH2PPh2] reacts with compounds containing acidic CH bonds (HX) to give unsymmetrical cis-dialkyls of general formula Pt(CH3)X(Diphos) [X = CH2COCH3, CH(COCH3)2, CH2CN or CH2NO2]; both the methyl and the cyclohexenyl complexes Pt(OH)R(Diphos) (R = CH3 or C6H9) insert carbon monoxide to give hydroxycarbonyl complexes PtR(CO2H)(Diphos) which are remarkably stable to decomposition by β-elimination.  相似文献   

16.
The solid-state behaviour of two series of isomeric, phenol-substituted, aminomethylphosphines, as the free ligands and bound to PtII, have been extensively studied using single crystal X-ray crystallography. In the first library, isomeric diphosphines of the type Ph2PCH2N(Ar)CH2PPh2 [1a–e; Ar = C6H3(Me)(OH)] and, in the second library, amide-functionalised, isomeric ligands Ph2PCH2N{CH2C(O)NH(Ar)}CH2PPh2 [2a–e; Ar = C6H3(Me)(OH)], were synthesised by reaction of Ph2PCH2OH and the appropriate amine in CH3OH, and isolated as colourless solids or oils in good yield. The non-methyl, substituted diphosphines Ph2PCH2N{CH2C(O)NH(Ar)}CH2PPh2 [2f, Ar = 3-C6H4(OH); 2g, Ar = 4-C6H4(OH)] and Ph2PCH2N(Ar)CH2PPh2 [3, Ar = 3-C6H4(OH)] were also prepared for comparative purposes. Reactions of 1a–e, 2a–g, or 3 with PtCl24-cod) afforded the corresponding square-planar complexes 4a–e, 5a–g, and 6 in good to high isolated yields. All new compounds were characterised using a range of spectroscopic (1H, 31P{1H}, FT–IR) and analytical techniques. Single crystal X-ray structures have been determined for 1a, 1b∙CH3OH, 2f∙CH3OH, 2g, 3, 4b∙(CH3)2SO, 4c∙CHCl3, 4d∙½Et2O, 4e∙½CHCl3∙½CH3OH, 5a∙½Et2O, 5b, 5c∙¼H2O, 5d∙Et2O, and 6∙(CH3)2SO. The free phenolic group in 1b∙CH3OH, 2f∙CH3OH, 2g, 4b∙(CH3)2SO, 5a∙½Et2O, 5c∙¼H2O, and 6∙(CH3)2SO exhibits various intra- or intermolecular O–H∙∙∙X (X = O, N, P, Cl) hydrogen contacts leading to different packing arrangements.  相似文献   

17.
Reaction of [Fe(η2-CS2R)(CO)2(PPh3)2][X] (R = CH3, CH2Ph; X = PF6, I) with P-n-Bu3 or PEt3 gives Fe(CS)(CO)2(PPh3)2 (3a); (ν(CS) 1235 cm−1; δ(13C) 324.28 ppm). The structure of 3a has been determined by X-ray diffraction. Crystal data are: a 18.821(5), b 12.113(3), c 18.149(5) Å, β 117.76(6)°, monoclinic, space group P21, Z = 4. The structure is a trigonal-bypyramid with equatorial CS group, trans PPh3 ligands, a FeC(S) bond distance of 1.768(8) and a CS bond distance of 1.563(8) Å.  相似文献   

18.
The reaction of Fe(CO)(CH2 CHCHCH2)2 with (Ph2 PCH2)2 results in formation of a 41 mixture of two isomers of Fe(CO)(CH2 CHCHCH2)-(Ph2 PCH2 CH2 PPh2). NMR studies concerning the structures of these isomers and their dynamic behavior in solution are described.  相似文献   

19.
Summary Rhodium(I), iridium(I), palladium(II) and platinum(II) complexes of the phosphinoamide ligands, Ph2PCH2CONHR (R = H, HDPA; Me, MDPA; Ph, PDPA) were prepared and characterized by using conductivity data, i.r., 1H and 31P(H) n.m.r. spectral data. Reaction of the ligands with MCl(PPh3)3 and MCl(CO)(PPh3)2 (M = Rh, Ir) in CH2Cl2 under reflux lead to the formation of MCl(PPh3)2 [Ph2PCH2C(O)NHR] and MCl(CO)(PPh3)[Ph2PCH2–C(O)HNR] respectively. The reaction of either K2MCl4 or cis-MCl2(PPh3)2 affords complexes of the type cis-MCl2[Ph2PCH2C(O)NHR]2 (M = Pd, Pt). A similar product results even from the reaction of phosphinoamides with cis-platin. Possible structures are proposed for the complexes based on their physicochemical data  相似文献   

20.
Abstract

The reaction of Ph2PCH2PPh2 (dppm) with 4-methylphenacyl bromide and 2-(bromoacetyl)naphthalene in chloroform produce the new phosphonium salts [Ph2PCH2PPh2CH2C(O)C6H4Me]Br (1) and [Ph2PCH2PPh2CH2C(O)C10H7]Br (2). Further, by reaction of the monophosphonium salts of dppm with the strong base Et3N the corresponding bidentate phosphorus ylides, Ph2PCH2P(Ph)2 = C(H)C(O)C6H4Me (3) and Ph2PCH2P(Ph)2 = C(H)C(O)C10H7 (4) were obtained. The reaction of these ligands with mercury(II) halides in dry methanol led to the formation of the mononuclear complexes {HgX 2[(Ph2PCH2PPh2C(H)C(O)C6H4Me)]} [X = Cl (5), Br (6), and I (7)] and {HgX 2[(Ph2PCH2PPh2C(H)C(O)C10H7)]} [X = Cl (8), Br (9), and I (10)]. Characterization of the obtained compounds was performed by elemental analysis, IR, 1H, 31P, and 13C NMR spectra. The structure of compounds 3 and 10 are unequivocally determined by single crystal X-ray diffraction techniques. X-ray analysis of 10 reveals the presence of mononuclear complex containing Hg atom in a distorted tetrahedral environment. In all complexes, the title ylides are coordinated through the ylidic carbon and the phosphine phosphorus. Computational studies on ligand 4 and complexes 8, 9, and 10 at DFT (B3LYP) level of theory are also reported. It was shown that the formation of P,C-coordinated 1+1 complex 10 is energetically more favored than corresponding P,P-coordinated 1+2 product.

[Supplemental materials are available for this article. Go to the publisher's online edition of Phosphorus, Sulfur, and Silicon and the Related Elements to view the following free supplemental files: Additional figures]  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号