首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Treatment of [Ru2(CO)(μ-CO) {μ-C(O)C2Ph2} (η-C 5H5)2] with allene in toluene at 100°C displaces diphenylacetylene and produces [Ru(CO)(η-C5H5)-{η3-C3H4Ru(CO)2(η-C5H5)}]; upon protonation a 1-methylvinyl cation [Ru2(CO)2(μ-CO){μ-C(Me)CH2}(η-C5H5)2]+ is formed which undergoes nucleophillic attack by hydride to yield the μ-dimethylcarbene complex [Ru2(CO)2-(μ-CO)(μ-CMe2)(η-C5H5)2].  相似文献   

2.
The metalmetal double-bonded μ-alkyne complex [Ru2(μ-CO)(μ-C2Ph2) (η-C5H5)2] (1) reacts with diazomethane at 0°C to yield Ru2(CO)(η-CH2) {μ-C(Ph)C(Ph)CH2} (η-C5H5)2] (2) incorporating two methylene units, one bridging the metal atoms and one linked with the alkyne. Upon heating, a second carboncarbon bond formation occurs to link the methylene groups and give [Ru2(CO)(μ-CO) {μ-C(Ph)C(Ph)C(H)Me} (η-C5H5)2 (3); the structures of 1 and 2 were established by X-Ray diffraction.  相似文献   

3.
The complexes [Ru2(CO)2(μ-CO)(μ-CMe)(η-C5H5)2]? and [Ru2CO2(μ-CO)(μ-CCH2)(η-C5H5)2] react together to give [{Ru2CO)3(η-C5H5)2}2(μ-CMeCHCH)]+ and [{Ru3(CO)3(η-C5H5)3}(μ-CCH2CHC){Ru2(CO)3(η-C5H5)2}], each characterised by X-ray diffraction. The former results from ethylidyne-vinylidene linking followed by an alkylidyne to vinyl rearrangement.  相似文献   

4.
The ethyne-derived demetallocycle [Ru2(CO) (μ-CO){μ-C(O)C2H2}(η-C5H5)2 isomerises in boiling toluene to yield the μ-vinylidene complex [Ru2(CO)2(μ-CO)(μ-CCH2) (η-C5H5)2], which on protonation with dry HBF4 provides the μ-carbyne complex [Ru2(CO)2(μ-CO)(μ-CCH3)(η-C5H5)2][BF4]; the structure of each product has been determined by X-ray diffraction. The μ-carbyne cation is attacked by hydride to produce the μ-methylcarbene complex [Ru2(CO)2(μ-CO)(μ-CHCH3)(η-C5H5)2].  相似文献   

5.
The reactivity of [Ru3Mo(μ42-CC)(μ-CO)3(CO)2(η-C5H4R)3(η-C5H5)] (R = H; Me) have been investigated, initially to elucidate the nature of the starting material, and, latterly, to define the reactivity of an interesting ethane-1,2-bis(ylidyne) species. While the mixed RuMo clusters were unreactive towards simple electrophiles and carbonyl substitution by phosphine ligands they did react with atmospheric oxygen or carbon monoxide to give substantially different products. In all instances oxygen was incorporated either at the metal centre or at the C2 fragment. High-pressure carbonylations yielded [Ru3(μ-CO)3(η-C5H5)33-C-C(O)O{Ru(CO)2(η-C5H5)})] and [{Ru2(μ-CO)(CO)2(η-C5H4Me)2}(μ42-CC){Ru(CO)(η-C5H4Me)Mo(η-C5H5)(=O)(μ-O)}], an ethane-1,2-bis(ylidene) complex, this exemplifying a relatively rare raft geometry which further reacted with Cl2CCCl2 to give [Mo34-C2(Ru(CO)2(η-C5H4Me))(CO)(μ-CO)(η-C5H5)3(Cl)2] having a similar geometry and undergone halogenation. In order to extend the extant examples of these raft clusters we explored the reaction of [{Ru(CO)2(η-C5H4R)2}2(μ-C2)] with [{Ru(CO)2(η-C5H5)2}2] to provide a rational synthetic pathway leading to very reactive [Ru(μ42-CC)(μ2-CO)2(CO)4(η-C5H4Me)2(η-C5H4R)2] rafts.  相似文献   

6.
UV irradiation of [Ru2(CO)4(η-C5H5)2] yields the tri- and tetra-ruthenium complexes [Ru2(CO)4(η-C5H5){η-C5H4Ru(CO)2(η-C5H5)}] and [Ru4(CO)63-C5H4)2(η-C5H5)2]. The μ3-C5H4 ligand in the latter has been characterised through an X-ray diffraction study on [Ru4(CO)5{P(OMe)3}(μ3-C5H4)2(η-C5H5)2].  相似文献   

7.
The protonated species [Fe2(η-C5H5)2(CO)2(η-CO){μ-CN(Me)H}]X, [Fe2(η-C5H5)2(CO)(CNMe)(μ-CO){μ-CN(Me)H}][X], and [Fe2(η-C5H5)2(CO)2{η-CN(Me)H}2][X]2 react with one equivalent of AgY. The Ag+ and one H+ act together as a two-electron oxidant. Silver metal is precipitated quantitatively and the substrates cleaved to give mono-nuclear products of the type (a) [Fe(η-C5H5)(CO)(L)X] and [Fe(η-C5H5(CO)(L)Y] or (b) Fe(η-C5H5(CO)(L)(CNMe)][X] (L = CO, CNMe). If X and Y are both coordinating anions such as NO3, I, or Br or the solvent is MeCN products of type (a) are usually obtained with X = Y = MeCN+ if acetonitrile is used as the solvent. However, if either X or Y is a non-coordinating anion such as BF4 or PF6 and methanol is the solvent, the products are usually those of type (b). When X = [p-MeC6H4SO3], both types of products are obtained in significant amounts. If two equivalents of Ph3P are added to the methanol solution of [Fe2(η-C5H5)2(CO)2{-CN(Me)H}2[BF6]2, no reaction takes place until the third equivalent of AgNO3 has been added. The products have been isolated and characterized by analysis and infrared spectroscopy. The previously unreported [Fe2(η-C5H5)2(CO)(CNMe)(η-CO){η-CN(Me)H}] X salts are described for X = BF4, PF6, Br · 2H2O, I · H2O, NO3 · 0.5H2O, and p-MeC6H4SO3.  相似文献   

8.
The reaction between [(η5-C5H5)MoH(CO)3] and disulphides gives dimeric or trimeric complexes depending upon the conditions. The syntheses of the novel trinuclear molybdenum carbonyl complex [{Mo(η5-C5H5)(SR)(μ-CO)(CO)}3] (R = Me), and dinuclear compounds [Mo25-C5H5)(μ-SR)3(CO)4] (R = Me) and [Mo25-C5H5)2(SR)2(CO)2(μ-SR)(μ-Br)] (R = Me or Ph) are reported.  相似文献   

9.
The bridging aminocarbyne complexes [Fe2{μ-CN(Me)(R)}(μ-CO)(CO)2(Cp)2][SO3CF3] (R = Me, 1a; Xyl, 1b; 4-C6H4OMe, 1c; Xyl = 2,6-Me2C6 H3) react with acrylonitrile or methyl acrylate, in the presence of Me3NO and NaH, to give the corresponding μ-allylidene complexes [Fe2{μ-η13- Cα(N(Me)(R))Cβ(H)Cγ(H)(R′)}(μ-CO)(CO)(Cp)2] (R = Me, R′ = CN, 3a; R = Xyl, R′ = CN, 3b; R = 4-C6H4OMe, R′ = CN, 3c; R = Me, R′ = CO2Me, 3d; R = 4-C6H4OMe, R′ = CO2Me, 3e). Likewise, 1a reacts with styrene or diethyl maleate, under the same reaction conditions, affording the complexes [Fe2{μ-η13-Cα(NMe2)Cβ(R′)Cγ(H)(R″)}(μ-CO)(CO)(Cp)2] (R′ = H, R″ = C6H5, 3f; R′ = R″ = CO2Et, 3g). The corresponding reactions of [Ru2{μ-CN(Me)(CH2Ph)}(μ-CO)(CO)2(Cp)2][SO3CF3] (1d) with acrylonitrile or methyl acrylate afford the complexes [Ru2{μ-η13-Cα(N(Me)(CH2Ph))Cβ(H)Cγ(H)(R′)}(μ-CO)(CO)(Cp)2] (R′ = CN, 3h; CO2Me, 3i), respectively.The coupling reaction of olefin with the carbyne carbon is regio- and stereospecific, leading to the formation of only one isomer. C-C bond formation occurs selectively between the less substituted alkene carbon and the aminocarbyne, and the Cβ-H, Cγ-H hydrogen atoms are mutually trans.The reactions with acrylonitrile, leading to 3a-c and 3h involve, as intermediate species, the nitrile complexes [M2{μ-CN(Me)(R)}(μ-CO)(CO)(NC-CHCH2)(Cp)2][SO3CF3] (M = Fe, R = Me, 4a; M = Fe, R = Xyl, 4b; M = Fe, R = 4-C6H4OMe, 4c; M = Ru, R = CH2C6H5, 4d).Compounds 3a, 3d and 3f undergo methylation (by CH3SO3CF3) and protonation (by HSO3CF3) at the nitrogen atom, leading to the formation of the cationic complexes [Fe2{μ-η13-Cα(N(Me)3)Cβ(H)Cγ(H)(R)}(μ-CO)(CO)(Cp)2][SO3CF3] (R = CN, 5a; R = CO2Me, 5b; R = C6H5, 5c) and [Fe2{μ-η13-Cα(N(H)(Me)2)Cβ(H)Cγ(H)(R)}(μ-CO)(CO)(Cp)2][SO3CF3] (R = CN, 6a; R = CO2Me, 6b; R = C6H5, 6c), respectively.Complex 3a, adds the fragment [Fe(CO)2(THF)(Cp)]+, through the nitrile functionality of the bridging ligand, leading to the formation of the complex [Fe2{μ-η13-Cα(NMe2)Cβ(H)Cγ(H)(CNFe(CO)2Cp)}(μ-CO)(CO)(Cp)2][SO3CF3] (9).In an analogous reaction, 3a and [Fe2{μ-CN(Me)(R)}(μ-CO)(CO)2(Cp)2][SO3CF3], in the presence of Me3NO, are assembled to give the tetrameric species [Fe2{μ-η13-Cα(NMe2)Cβ(H)Cγ(H)(CN[Fe2{μ- CN(Me)(R)}(μ-CO)(CO)(Cp)2])}(μ-CO)(CO)(Cp)2][SO3CF3] (R = Me, 10a; R = Xyl, 10b; R = 4-C6H4OMe, 10c).The molecular structures of 3a and 3b have been determined by X-ray diffraction studies.  相似文献   

10.
The isocyanide complexes [Fe(η-C5H5)(CO)2CNR][PF6] and Cr(CO)5CNR (R = CH3, C6H11, C6H5) are conveniently prepared at ?50°C from carbonyl metallates, isothiocyanates, and phosgene. At room temperature Na[Fe(η-C5H5)(CO)2] reacts with isothiocyanates (11) to give the isocyanide bridged complexes [Fe2(η-C5H5)2(μ-CO)(μ-CNR)(CO)2].  相似文献   

11.
Reaction of the heteronuclear cluster RuOs3(μ-H)2(CO)13 (1) with azulene under thermal activation afforded the novel clusters RuOs3(μ-H)(CO)93522-C10H9) (3) and Ru2Os3(μ-H)2(CO)13(μ-CO)(μ352-C10H8) (5a), with 4,6,8-trimethylazulene to give RuOs3(μ-H)(CO)8(μ-CO)(μ,η54-C10H6Me3) (4) and Ru2Os3(μ-H)2(CO)13(μ-CO)(μ352-C10H5Me3) (5b), and with guaiazulene to give Ru2Os3(CO)113533-C10H5Me2iPr) (6), respectively. In 35, cluster-to-ligand hydrogen transfer appears to have taken place, with the organic moiety capping a trimetallic face in 3, bridging a metal–metal bond in 4 and via a μ352 bonding mode in 5a and 5b. Cluster 6 contains a trigonal bipyramidal metal framework with the guaiazulene ligand over a triangular metal face. All five clusters have been completely characterised, including by single-crystal X-ray diffraction analysis.  相似文献   

12.
The reaction of [Ru3(CO)12] (1), with indene in refluxing xylene affords [{(η5-C9H7)Ru(CO)2}2] (2), in high yield. An analogous reaction of 1 with 2-phenylindene affords the expected dinuclear complex [{(η5-C9H6Ph)Ru(CO)2}2] (5), and a heptaruthenium cluster [(C9H4Ph)Ru7(μ-H)(μ-CO)2(CO)16] (6). The indenyl ligand in compound 6 exhibits a novel bonding mode in which the benzenoid ring is μ41122 bound to the cluster. Refluxing 1 with bis-indenyl methane affords the dinuclear complex [Ru2(CO)4{μ-(η5-C9H6)2CH2}] (7), which reacts with iodine via Ru-Ru bond cleavage to give [Ru2I2(CO)4{(η5-C9H6)2CH2}] (8).  相似文献   

13.
The iridium and rhodium complexes [MCl(CO)2(NH2C6H4Me-4)] (M = Ir or Rh) react with [Os3(μ-H)2(CO)10] to give the tetranuclear clusters [MOs3(μ-H)2(μ-Cl)(CO)12]; the iridium compound being structurally identified by X-ray diffraction. Similarly, [IrCl(CO)2(NH2C6H4Me-4)] and [Rh2(μ-CO)2(η-C5Me5)2] afford the tetranuclear cluster [Ir2Rh2(μ-CO)(μ3-CO)2(CO)4(η-C5Me5)2], also characterised by single-crystal X-ray crystallog  相似文献   

14.
The clusters [Ru4(μ-CO)(CO)1041212-C5H6)2] (1), [Ru4(CO)8441113-C10H12)(μ3321-C5H6)] (2) and [Ru4(CO)10441131-C15H16)] (3) have been prepared from the reaction of [H4Ru4(CO)12] with 1-penten-3-yne. This reaction is observed to proceed with dimerization and trimerization through the triple bonds. The products were characterized spectroscopically by 1H- and 13C-NMR. X-ray crystal structures of compounds 1 and 2 are also described.  相似文献   

15.
The SPh functionalized vinyliminium complexes [Fe2{μ-η13-Cγ(R′)Cβ(SPh)CαN(Me)(R)}(μ-CO)(CO)(Cp)2][SO3CF3] [R = Xyl, R′ = Me, 2a; R = Me, R′ = Me, 2b; R = 4-C6H4OMe, R′ = Me, 2c; R = Xyl, R′ = CH2OH, 2d; R = Me, R′ = CH2OH, 2e; Xyl = 2,6-Me2C6H3] are generated in high yields by treatment of the corresponding vinyliminium complexes [Fe2{μ-η13-Cγ(R′)Cβ(H)CαN(Me)(R)}(μ-CO)(CO)(Cp)2][SO3CF3] (1a-e) with NaH in the presence of PhSSPh. Likewise, the diruthenium complex [Ru2{μ-η13-Cγ(Me)Cβ(SPh)CαN(Me)(Xyl)}(μ-CO)(CO)(Cp)2][SO3CF3] (2f) was obtained from the corresponding vinyliminium complex [Ru2{μ-η13-Cγ(Me)Cβ(H)CαN(Me)(Xyl)}(μ-CO)(CO)(Cp)2] (1f). The synthesis of 2c is accompanied by the formation, in comparable amounts, of the aminocarbyne complex [Fe2{μ-CN(Me)(4-C6H4OMe)}(SPh)(μ-CO)(CO)(Cp)2] (3).The molecular structures of 2d, 2e and 3 have been determined by X-ray diffraction studies.  相似文献   

16.
The salts [Fe2η55-C5H4CH{NMe3)CH(NMe2)C5H4}(CO)2(μ-CO)2][X] (X = I or SO3CF3) are the synthetic precursors to a wide range of [Fe2(η-C5H5)2(CO)2(μ-CO)2] derivatives in which the two cyclopentadienyl ligands are joined by a two-carbon bridge.  相似文献   

17.
The heteronuclear cluster RuOs3(μ-H)2(CO)13 (1) reacts with indene under thermal activation to afford the novel clusters RuOs3(μ-H)(CO)9(μ-CO)25-C9H7) (3), RuOs3(μ-H)(CO)93522-C9H7) (4) and Ru2Os3(μ-H)(CO)113522-C9H7) (5), the latter two possessing indenyl ligands in the μ3522 bonding mode. Cluster 5 exists as a mixture of two isomers. The inter-relationship among the clusters has also been investigated.  相似文献   

18.
The reaction of 2-borolenes and 3-borolenes C4H6BR (R = Ph, Me, C6H11, OMe) with Mn, Fe, and Co carbonyls leads to dehydrogenating complexation with formation of simple, i.e. C-unsubstituted (η5-borole)metal complexes. Thus, Mn2(CO)10 gives the triple-decked complexes (μ-η5-C4H4BR)[Mn(CO)3]2 (R = Ph, OMe). By irradiation of Fe(CO)5 the half-sandwich complexes Fe(CO)35-C4H4BR) (R = Ph, Me, C6H11, OMe) are formed, whereas Co2(CO)8 yields the dinuclear complexes (μ-CO)2[Co(CO)(η5-C4H4BR)]2 (Co-Co) (R = Ph, Me). A low-temperature X-ray structure determination of Fe(CO)35-C4H4BPh) is described in detail.  相似文献   

19.
Complex Ru3(μ-CO)2(CO)631144-C4Ph2(CH=CHPh)2} containing an open triruthenium framework undergoes rearrangement to the Ru3-triangular Ru3(CO)831142-C4Ph2(CH=CHPh)2) cluster when heated in refluxing hexane. Reactions of the latter complex with PPh3, P(OPri)3, and CO were studied. The structure of one of the reaction products, the Ru3(CO)8(PPh33114-C4Ph2(CH=CHPh)2} cluster, was established by X-ray structural analysis.  相似文献   

20.
Reaction of [Ru3(CO)12] with tri(2-furyl)phosphine, P(C4H3O)3, at 40 °C in the presence of a catalytic amount of Na[Ph2CO] furnishes two triruthenium complexes [Ru3(CO)10{P(C4H3O)3}2] (1) and [Ru3(CO)9{P(C4H3O)3}3] (2) with the ligand coordinated through the phosphorus atom. Treatment of 1 and 2 with Me3NO at 40 °C affords the dinuclear phosphido-bridged complexes [Ru2(CO)6(μ-η12-C4H3O){μ-P(C4H3O)2}] (3) and [Ru2(CO)5(μ-η12-C4H3O){μ-P(C4H3O)2}{P(C4H3O)3}] (4), respectively, that are formed via phosphorus–carbon bond cleavage of a coordinated phosphine followed by coordination of the dissociated furyl moiety to the diruthenium center in a σ,π-alkenyl mode. Reaction of [Ru3(CO)12] with tri(2-furyl)phosphine in refluxing benzene gives, in addition to 3 and 4, low yields of the cyclometallated complex [Ru3(CO)9{μ-η11-P(C4H3O)2(C4H2O)}2] (5). Treatment of 3 with EPh3 (E = P, As, Sb) at room temperature yields the monosubstituted derivatives [Ru2(CO)5(μ-η12-C4H3O){μ-P(C4H3O)2}(EPh3)] (E = P, 8; E = As, 9; E = Sb, 10). Similar reactions of 3 with P(C4H3O)3, P(OMe)3 and ButNC yield 4, [Ru2(CO)5(μ-η12-C4H3O){μ-P(C4H3O)2}{P(OMe)3}] (11) and [Ru2(CO)5(μ-η12-C4H3O){μ-P(C4H3O)2}(NCBut)] (12), respectively. The molecular structures of complexes 3, 4 and 8 have been elucidated by single crystal X-ray diffraction studies. Each complex contains a bridging σ,π-alkenyl group and while in 4 the phosphine is bound to the σ-coordinated metal atom, in 8 it is at the π-bound atom. Protonation of 3 and 4 gives the hydride complexes [(μ-H)Ru2(CO)6(μ-η12-C4H3O){μ-P(C4H3O)2}]+ (6) and [(μ-H)Ru2(CO)5(μ-η12-C4H3O){μ-P(C4H3O)2}{P(C4H3O)3}]+ (7), respectively, while heating 3 with dimethylacetylenedicarboxylate (DMAD) in refluxing toluene gives the cyclotrimerization product, C6(CO2Me)6.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号