首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The electrode reaction Cu(I)/Cu(Hg) in complex chloride, bromide and iodide solutions with DMSO as solvent has been studied at the equilibrium potential by the faradiac impedance method and a cyclic current-step method. The kinetic data refer to the ionic strength 1 M with ammonium perchlorate as supporting electrolyte and to the temperature 25°C. Double-layer data have been obtained from electrocapillary measurements. From the results for the chloride system at [Cl?]>15 mM it is concluded that the charge transfer is catalysed by ligand bridging at the amalgam and the following parallel reactions predominate: Clads?-Cu++e?(am)Clads?+Cu(am) Clads?-Cu2Clj2?j+e?(am)Clads?+Cu(am)+CuClj1?j At lower [Cl?] and in the whole ligand concentration range available in the bromide and iodide systems the impedance measurements indicate a rate-controlling adsorption step. It is suggested that uncharged complex CuL (L?=halide ion) then forms an adsorbed two-dimensional network on the amalgam surface.  相似文献   

2.
The crystal structures have been determined of CH3NH3HgCl3, (CH3NH3)2HgCl4, and CH3NH3Hg2Cl5. In (CH3NH3)2HgCl4 the HgII atom is tetrahedrally coordinated by four Cl atoms with Hg? Cl bond lengths of 2.464 to 2.478 Å. In the other two compounds the HgII atom is involved in two short covalent Hg? Cl bonds, forming a pseudo HgCl2 molecule and two much longer bridging Hg? Cl bonds. The methylammonium groups are connected by hydrogen bonds to the chlorine atoms. The nature of the hydrogen bonding scheme probably causes disorder of the methylammonium groups.  相似文献   

3.
The compound [Co(En)3]2[Hg2(H2O)Cl6]Cl4 (I, En is ethylenediamine) has been synthesized and studied by X-ray diffraction. The crystals of I (a = 21.8745(14) Å, b = 10.6008(6) Å, c=15.4465(12) Å, space group Pna21) consist of tris(ethylenediamine)cobalt(III) complexes (the unit cell contains two [Co(En)3]3+ cations of opposite chirality). [Hg2(H2O)Cl6]2? anions, and isolated chloride ions. The complex anion consists of the tetrahedral [HgCl4]2? group (Hg-Cl, 2.44–2.56 Å) and the hydrated molecule [Hg(H2O)Cl2] (Hg-Cl, 2.301 and 2.308 Å; Hg-O, 2.788 Å) combined by weak Hg-Cl interactions (2.915 and 3.220 Å).  相似文献   

4.
The interaction of inorganic mercury (as HgCl2) with SeO2 and organic Se-compounds is compared. Instrumental neutron activation analysis (INAA) was applied as the analytical method. Organ concentrations of Hg and Se were always significantly higher after simultaneous i. p. injections with HgCl2 and Se-compounds. Especially high abundances of Se and Hg in mice organs were found after simultaneous injection with Se-methionine and HgCl2. We suggest that Hg2+ ions are bonded by selenohydryl groups of the metabolites of injected Se-compounds. Binding yield of Hg2+ ions with metabolites of Se-compounds depends upon the chemical form of injected Se-compounds. Variations in the content of Zn, Co, Fe and Rb were observed in all the investigated organs after a single injection with HgCl2 or Se-compounds. Simultaneous injection with HgCl2 and Se-compounds affects the contents of these elements in comparison with single injections.  相似文献   

5.
Solid HgCl2 is readily detected at ambient conditions by electron capture in a HePI-MS source. The captured electron occupies the empty 6 s orbital of the Hg atom. The resulting radical-anion HgCl2 ?? can exist as three “flexomers” of different Cl-Hg-Cl angle. The facile in-source formation of HgCl2 ?? and the adduct [HgCl3]–- is exploited to detect other solid Hg compounds by exposing them to an external chloride source, such as HCl, NaCl, or vapors emanating from solid TiCl3. In situ oxidation of Hg2Cl2 with H2O2 generated signals for HgCl2 ?? and [HgCl3] , suggesting that oxidation makes Hg 6 s orbital available for electron capture.
Figure
?  相似文献   

6.
Chitosan and pectic acid have been modeled as disaccharides or oligosaccharides for Hg2+ and Pb2+ adsorption. Reasonable models of both biopolymers were used. Several adsorption sites of both polysaccharides were considered, mainly NH2 in chitosan and CO2 in pectic acid. Hg2+ has several points of anchorage on chitosan. The most important one is NH2 . The Molecular Mechanic modeling permit us to compare in relative terms the different conformations of models of pectic acid and chitosan and their effect in heavy metal coordination. Using the Parameterized Model version 3 (PM3), we report the formation enthalpy of inter‐ and intramolecular compounds with Hg and Pb. The Extended Huckel method (EHM) results seem to indicate that electrostatic interaction (leading to adsorbed cation on NH2 and on sites different to NH2) could be the reason for the high uptake found for Hg2+ using chitosan. Besides NH2, the OH near the amine group is the preferred site for Hg2+ adsorption, especially if it is ionized. In the case of Pb2+ adsorption, several sites of chitosan present no interaction with this cation. Only the NH2 group and the ionized OH group mentioned above seem to be the preferred sites, following the EH modified (EHMO) results. The Hg‐ and Pb‐adsorption modeling on pectic acid permit us to conclude that the best site is the same for both metals: the bridge oxygen between monomers of galacturonic acid. the carbonyl group from carboxylate is the best second site for Hg2+, whereas the internal oxygen bridge is the best second site for Pb2+. Considering the Hg 2+ chemistry in aqueous solution, we evaluated the HgOH+ and HgCl+ or HgCl3 adsorption on both copolymers, using EHMO. The energetic of adsorption changed on both biopolymers for these species, comparing them with Hg2+.  相似文献   

7.
By means of X-ray diffraction the chain structure of [Cu(l-Arg)2]Hg2Cl6 (monoclinic, a = 10.2348(9) Å, b = 9.1386(7) Å, c = 14.8521(14) Å, β = 97.455(11)°, space group P21) is established. The chains are formed by square-planar [Cu(l-Arg)2]2+ cations of the type trans-[Cu(N)2(O)2] (l-Arg is the zwitter-ion of arginine; Cu-N 1.992 Å and 1.938(6) Å, Cu-O 1.953 Å and 1.967(4) Å) that are bonded to two adjacent binuclear [Cl2Hg(μ-Cl)2HgCl2]2? ions through its clorine atoms Cl (Hg-Cl bonds are within 2.34–2.78 Å). With these two additional Cu…Cl contacts Cu adopts the geometry of an elongated octahedron with two apical Cl (Cu-Cl 2.961 Å and 3.064(3) Å).  相似文献   

8.
The formal potentials of the Hg2+/Hg 2 2+ , Hg 2 2+ /Hg and Hg2+/Hg redox couples and the apparent equilibrium constants of the reaction Hg2+ + Hg ∝ Hg 2 2+ in conc. aqueous solutions of Mg(ClO4)2 and Ca(ClO4)2 have been determined from emf measurements performed using cells with liquid junction. Based on these data, the hydration numbers of the Hg2+ and Hg 2 2+ ions were estimated.  相似文献   

9.
Two oxidation waves are observed at mercury electrodes for tetraphenyllead in dichloromethane. The mechanisms of the oxidation processes have been investigated by dc and differential pulse polarography. The first wave is a broad two-electron step and represents the summation of a number of processes related to mercury exchange and halide abstraction. The exchange reactions are as follows: 2 Φ4Pb + Hg→2Φ3Pb+ + Φ2Hg+2e? 2 Φ3Pb+ + Hg→2Φ2Pb2+ + Φ2Hg+2e? Dichloroethane and HgCl2 are identified as products of controlled potential electrolysis experiments as well as Φ2Hg and Φ2PbCl2 implying that the coordinatively unsaturated Φ3Pb+ and/or Φ2Pb2+ react with the solvent dichloromethane and abstract chloride. The second oxidation process is the two electron step. Φ2Hg+Hg→2 ΦHg+ + 2e?Tetraalkyllead compounds (tetramethyl, tetraethyl, tetrabutyl) also give rise to related electrode processes at mercury electrodes and polarographic techniques may form the basis of a method for their analytical determination if separated chromatographically prior to detection.  相似文献   

10.
Thermical Decomposition of Hg2Cl2 and Hg2Br2 The thermical decomposition of Hg2Cl2 and Hg2Br2 was proved by total pressure measurements in a membrane manometer. The decomposition according to Hg2X2,s = Hg,g + HgX2,g and their thermodynamic data were confirmed.  相似文献   

11.
The substoichiometric extraction of Hg2+ using diethyldithiocarbamic acid and 203Hg tracer was studied. Chloroform was employed to remove the complexes from the aqueous media which were 0.5M H2SO4 or 1 M HClO4 and 0 to 5 M NaCL. - Systems containing Cl? allowed extraction of Hg2+ for all DDC/Hg molar ratios, the extracted complexes being HgCl(DDC) and Hg(DDC)2. Their exchange constant was determined. - In the absence of Cl?, no extraction could be effected in either system if the DDC/Hg molar ratio was < 1; the H2SO4 system remained clear, whereas a precipitate of HgClO4(DDC) formed in the HClO4 system. For molar ratios > 1, the extraction of Hg2+ increased linearly with the addition of DDC, the extracted complex being Hg(DDC)2.  相似文献   

12.
A novel method designed to observe the collision complex of a photochemical reaction is reported here. The reactants Hg, Cl2 are frozen in a van der Waals complex (HgCl2), and then promoted by an optical excitation (250 nm) to the reactive state. The broad complex action spectrum, presumably due to the Hg+-Cl2? intermediate, is monitored through the HgCl(B 2Σ+) fluorescence.  相似文献   

13.
Chemical modifications of protein crystals may be achieved via soaking of reactants from their precipitating solution, through the solvent channel, into the protein matrix. We describe a Raman microscopy approach to follow mercury insertion into cysteine pairs within protein single crystals, via soaking in an aqueous Hg2+ solution. The method has been developed using bovine insulin as the model system. Applying an efficient mercuration protocol, consisting of a first step of disulphide bridge TCEP-induced reduction within the crystal, followed by overnight reaction with a HgCl2 solution, we obtained Hg-derivative crystals. Raman spectra collected on these derivative crystals, kept in the mother liquor, reveal a characteristic Raman band at 335 cm?1, which has been assigned to a –S–Hg–S– bridge. The analysis provides Raman-based markers of mercury binding to cysteines, and thus of mercury intoxication.  相似文献   

14.
X-ray structural analysis has revealed that reaction of (BEDT-TTF)[HgCl3] with PhCl leads to the formation of a cation-radical salt (BEDT-TTF)4[Hg2Cl6]· PhCl, which exhibits a laminar crystal structure. The cationic layer is characterized by a grid or lattice network of contracted S...S intermolecular distances (3.396(4)–3.647(5) Å), which unite the BEDT-TTF cations in ribbons or bands, parallel to the [014] direction, and which also bind the ribbons together in a direction close to the [010] axis. The presence of this type of lattice network explains the metallic nature of the conductivity of this salt (BEDT-TTF)4Hg2Cl6]·PhCl in the temperature range 300.0–1.5 K, and is the basis of assigning this salt to a new class of organic, two-dimensional conductors. The [Hg2Cl6]2– anions and PhCl solvent molecules are united via secondary Hg...Cl 3.176(5) Å and Cl...Cl 3.480(6) Å interaction forces to form centrosymmetric tetramers [Hg2Cl6PhCl]2 4–, stretched out along the [014] axis direction.Translated from Izvestiya Akademii Nauk SSSR, Seriya Khimicheskaya, No. 9, pp. 2062–2070, September, 1991.The authors wish to acknowledge R. N. Lyubovskaya for supplying the crystals and for helpful discussion of the results.  相似文献   

15.
The titration of chloride with Hg+2 according to CLARKE allows the determination of lower concentrations as was possible according to MOHR. The greater sharpness of the endpoint at lower concentrations and the use of a more dilute Hg+2 solution permit a further lowering of the concentration limit down to 0.05 mg Cl-/l, when using a calibration curve, the remarkable form of which perhaps may be attributed to the formation of HgCl2.2HgO. This sensibility allows a suitable chloride determination in boiler condensates and the wetness determination of steam.  相似文献   

16.
A new surface based on poly(vinylferrocenium) (PVF+)-modified platinum electrode was developed for determination of Hg2+ ions in aqueous solutions. The polymer was electrodeposited on platinum electrode by constant potential electrolysis as PVF+ClO4. Cl ions were then attached to the polymer matrix by anion exchange and the modified electrode was dipped into Hg2+ solution. Hg2+ was preconcentrated at the polymer matrix by adsorption and also complexation reaction with Cl. Detection of Hg2+ was carried out by differential pulse anodic stripping voltammetry (DPASV) after reduction of Hg2+. Mercury ions as low as 5 × 10−10 M could be detected with the prepared electrode and the relative standard deviation was calculated as 6.35% at 1 × 10−6 M concentration (n = 6). Interferences of Ag+, Pb2+ and Fe3+ ions were also studied at two different concentration ratios with respect to Hg2+. The developed electrode was applied to the determination of Hg2+ in water samples.  相似文献   

17.
The title subject has been studied through galvanostatic single-pulse and chronopotentiometric measurements on the Mn(Hg)/Mn(II) electrode and equilibrium measurements on the same and the Ag/AgCl electrode, all in x MMnCl2+(0.5?x)M MgCl2 solutions of pH 4.3–4.9 at 25°C. The Mn(Hg)/Mn(II) reactions are found to occur in two consecutive steps, an unsymmetric (αc near 0.8) ion-transfer step Mn(Hg)/Mn(I) and an essentially symmetric (αc near 0.5) electron-transfer step Mn(I)/Mn(II). Besides charge transfer, no sluggishness other than diffusion is observed, but the dispersed precipitate Mn2Hg5 of saturated amalgam serves as an ageing-dependent source of anodic reactant Mn(Hg). Quantitative kinetic and thermodynamic data are presented and discussed. Comparisons are made to corresponding reactions for the succeeding elements iron, cobalt, nickel, copper, and zinc.  相似文献   

18.
This work reports the development of a dispersive liquid – liquid microextraction method for the simultaneous extraction, preconcentration, and derivatization of Hg2+ and CH3Hg+ species from water samples for further determination by GC – MS. Some parameters of the proposed method, such as volume and type of disperser and extraction solvent, and Na[B(C6H5)4] concentration were investigated using response surface methodology. Suitable recoveries were obtained using 80 μL C2Cl4 (as extraction solvent), 1000 μL ethanol (as disperser solvent), and 300 μL 2.1 mmol/L Na[B(C6H5)4] (as derivatizing agent). Accuracy was evaluated in terms of recovery and ranged from 87 to 99% with RSD values <7%. In addition, a certified reference material of water (NIST 1641d) was analyzed and agreed with the certified value about 107% (for Hg2+), with RSD values <8.5%. LODs were 0.3 and 0.2 μg/L, with enrichment factors of 112 and 115 for Hg2+ and CH3Hg+, respectively. The optimized method was applied for the determination of Hg2+ and CH3Hg+ in tap, well, and lake water samples.  相似文献   

19.
Temperature Dependent Single Crystal Investigations of α-Na3Hg In contrast to β-Na3Hg (rhomboedrally distorted Li3Bi-type) α-Na3Hg crystallizes in a hitherto poorly understood variant of the Na3As-type. Based on temperature dependent measurements of poly- and single crystalline samples (?100°C < T < +35°C) we show, that in particular the sodium atoms (Na1) located in the region of the octahedral Hg6-holes show a pronounced temperature dependent dynamical behaviour. To a lesser extend this is also true for the tetrahedrally coordinated Na-atoms (Na2). With increasing temperature the former ones more and more approach the centers of the opposite triangular faces of mercury atoms, limiting the Hg6-octahedra along [001]. Occupation of the latter positions by sodium atoms would lead to unusual short interatomic distances dNa? Hg. However before reaching this unreasonable situation α-Na3Hg decomposes under formation of β-Na3Hg.  相似文献   

20.
The reactions (I) Hg2Cl2(s) + Br2(g) and (II) HgCl2(s) + HgBr2(s) have been investigated by an X-ray method. Both the reactions yield two forms of the mixed halide HgClBr, designated as α-HgClBr and β-HgClBr. The cell parameters of the two are as follows:α-HgClBr: a = 6.196 A?, b = 13.12 A?, c = 4.37 A?, z = 4, ? = 5.91 g/cm3. The powder pattern and cell parameters are similar to that of HgCl2. Therefore it is probable that the chlorine atoms, in the linear halogenHghalogen molecules of HgCl2 structure have been replaced by bromines, and since the radius of the bromine atom is larger than that of chlorine, the lattice is larger in this case.β-HgClBr: a = 6.78 A?, b = 13.175 A?, c = 4.17 A?, z = 4, ? = 5.40. These parameters are the same as those reported in the literature for β-Hg(ClBr)2, and its X-ray powder pattern is similar to HgCl2. Therefore this phase also has linear halogenHghalogen molecules but the distribution of Cl and Br atoms is perhaps random.Heating the products (I) and (II) up to the melting point increases the amount of α phase and decreases the β phase, whereas crystallization increases the β phase. DTA study has supported the X-ray findings.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号