首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 366 毫秒
1.
The novel rhenium pentahydride complex [ReH5(PPh3)2(PTA)] (2) was synthesized by dihydrogen replacement from the reaction of [ReH7(PPh3)2] with PTA in refluxing THF. Variable temperature NMR studies indicate that 2 is a classic polyhydride (T1(min) = 133 ms). This result agrees with the structure of 2, determined by X-ray crystallography at low temperature. The compound shows high conformational rigidity which allows for the investigation of the various hydride-exchanging processes by NMR methods. Reactions of 2 with equimolecular amounts of either HFIP or HBF4 · Et2O at 183 K afford [ReH5(PPh3)2{PTA(H)}]+ (3) via protonation of one of the nitrogen atoms on the PTA ligand. When 5 equivalents of HBF4 · Et2O are used, additional protonation of one hydride ligand takes place to generate the thermally unstable dication [ReH42-H2)(PPh3)2{PTA(H)}]2+ (4), as confirmed by 1H NMR and T1 analysis. IR monitoring of the reaction between 2 and CF3COOD at low temperature shows the formation of the hydrogen bonded complex [ReH5(PPh3)2{PTA?DOC(O)CF3}] (5) and of the ionic pair [ReH5(PPh3)2{PTA(D)?OC(O)CF3}] (6) preceding the proton transfer step leading to 3.  相似文献   

2.
Three new rhenium polyhydride complexes, [ReH7(L2)], incorporating bidentate organophosphorus ligands (L2 = DPEphos, xantphos and biphep), were successfully synthesized using the corresponding [ReOCl3(L2)] complexes as precursors. The polyhydride complexes were characterized by IR, 1H and 31P NMR, and elemental analysis.  相似文献   

3.
Reaction of (L)(Ph3P)2ReH2 (L = η5-pyrroly) with acyl chlorides leads directly to N-acylpyrroles in high yields; with methyl triflate cations (L′)(Ph3P)2ReH2+ (L = η5-N-methylpyrrole) are formed, which release N-methylpyrroles by heating in DMSO.  相似文献   

4.
Reaction of diamine-bis(phenol) ligands containing a mixture of N-methyl and N,N′-dimethyl-N,N-bis(2-hydroxy-3,5-dimethylbenzyl)ethylenediamine, H2L1 and H2L3, with [Ti(OCHMe2)4 in absolute ethanol under reflux without exclusion of air and moisture gives [(L1)Ti (OEt–O–Ti(OEt)(L1)] (1). [(L3)Ti(OEt)–O–Ti(OEt)(L3)] (2) forms when the remaining solution containing [(L3)Ti(OEt)2] (3) (characterised by X-ray crystallography) is hydrolysed with H2O. For the N-methyl and N,N′-dimethyl ligand mixture H2L2 and H2L4, which contain tert-butyl groups on the ortho-positions of the aryl rings, [(L2)Ti(OEt)–O–Ti(OEt)(L2)] (4) forms much more slowly and [(L4)Ti(OEt)2] (5) does not hydrolyse when H2O is added. When the N-protonated ligand N,N-bis(2-hydroxy-3-methyl-5-tert-butylbenzyl)ethylenediamine, H2L5, is used, rapid hydrolysis to two isomers of [(L5)Ti(OEt–O–Ti(OEt)(L5)] (6) occurs without addition of water. For N,N-bis(2-hydroxy-3,5-di-tert-butylbenzyl)ethylenediamine, H2L6, hydrolysis to [(L6)Ti(OEt)–O–Ti(OEt)(L6)] (7) occurs slowly when H2O is added. For pendant NMe2 ligand N,N-dimethyl-N′,N′-bis(2-hydroxy-3-methyl-5-tert-butylbenzyl)ethylenediamine, H2L7, the hydrolysis reaction readily gives [(L7)Ti(OEt)–O–Ti(OEt)(L7)] (8) for which an X-ray crystal structure was obtained. The ortho-tert-butyl ligand derivative H2L8 formed a complex analysing as [(L8)Ti(OEt)–O–Ti(OEt)(L8)] (9) which could not be studied further due to insolubility. Pendant pyridine ligand N-(2-pyridylmethyl)-N,N-bis(2′-hydroxy-3′-methyl-5′-tert-butylbenzyl)amine, H2L9, apparently forms isomers of [(L9)Ti(OEt)–O–Ti(OEt)(L9)] and possibly [{(L9)Ti(O)}2] from [(L9)Ti(OEt)2] (10). The ortho-tert-butyl ligand derivative H2L10 formed [(L10)Ti(OEt)–O–Ti(OEt)(L10)] (11) for which an X-ray crystal structure was obtained.  相似文献   

5.
This study investigates the coordination chemistry of the tetradentate pyridine-containing 12-membered macrocycles L1-L3 towards Platinum Group metal ions PdII, PtII, and RhIII. The reactions between the chloride salts of these metal ions and the three ligands in MeCN/H2O or MeOH/H2O (1:1 v/v) are shown, and the isolated solid compounds are characterized, where possible, by mass spectroscopy and 1H- and 13C-NMR spectroscopic measurements. Structural characterization of the 1:1 metal-to-ligand complexes [Pd(L1)Cl]2[Pd2Cl6], [Pt(L1)Cl](BF4), [Rh(L1)Cl2](PF6), and [Rh(L3)Cl2](BF4)·MeCN shows the coordinated macrocyclic ligands adopting a folded conformation, and occupying four coordination sites of a distorted square-based pyramidal and octahedral coordination environment for the PdII/PtII, and RhIII complexes, respectively. The remaining coordination site(s) are occupied by chlorido ligands. The reaction of L3 with PtCl2 in MeCN/H2O gave by serendipity the complex [Pt(L3)(μ-1,3-MeCONH)PtCl(MeCN)](BF4)2·H2O, in which two metal centers are bridged by an amidate ligand at a Pt1-Pt2 distance of 2.5798(3) Å and feature one square-planar and one octahedral coordination environment. Density Functional Theory (DFT) calculations, which utilize the broken symmetry approach (DFT-BS), indicate a singlet d8-d8 PtII-PtII ground-state nature for this compound, rather than the alleged d9-d7 PtI-PtIII mixed-valence character reported for related dinuclear Pt-complexes.  相似文献   

6.
Acid?Cbase equilibria of the aqua adducts of Ru(II) arene complexes, general formulae [(??6-p-cymene)Ru (L1?3)Cl2] where L1?=?3-acetylpyridine (1), L2?=?4-acetylpyridine (2) and L3?=?2-amino-5-chloropyridine (3), then [(??6-p-cymene)Ru(HL4)Cl2] with HL4?=?isonicotinic acid (4); [(??6-p-cymene)Ru(HL5?8)Cl] where H2L5?=?2,3-pyridine dicarboxylic acid (5), H2L6?=?2,4-pyridine dicarboxylic acid (6), H2L7?=?2,5-pyridine dicarboxylic acid (7) and H2L8?=?2,6-pyridine dicarboxylic acid (8) have been studied. pK a values were determined by potentiometry at 25?°C and constant ionic strength of 0.1?M NaNO3. The assumed equilibria were confirmed by UV and 1H-NMR spectroscopy.  相似文献   

7.
The dark red octahydride complex of dirhenium, Re2H8(PPh3)4, undergoes a reversible one-electron oxidation to the blue mono-cation [Re2H8(PPh3)4]+ (Ebuit;12 ?0.24 V vs. SCE by cyclic voltammetry). The X-band ESR spectrum of a dichloromethane glass (?160°C) containing the monocation is in accord with the HOMO being a delocalized metal-based orbital. Treatment of the heptahydrides ReH7(PR3)2 (PR3 = PPh3 or PEtPh2) with C6H11NC or Me3CNC in the presence of KPF6 leads to the elimination of hydrogen and the formation of [Re(CNR)4(PR3)2]PF6. Electrochemical oxidation of ReH5(PPh3)2L (L = PPh3, PEt2Ph, pyridine, piperidine or cyclohexylamine) activities these molecules to attack by RNC to afford rhenium(I) species  相似文献   

8.
Mechanistic studies were conducted on reaction of [ReH42-H2)(Cyttp)]OTf (1(OTf); Cyttp = PhP(CH2CH2CH2PCy2)2, OTf = O3SCF3) with ketones, both neat and in solution. Treatment of 1(OTf) with excess acetone at 60-65 °C affords [ReH2(O)(Cyttp)]OTf (2(OTf)) in high yield, nearly 1 equiv. of H2, 2 equiv. of 2-propanol, 1 equiv. of each of 4-hydroxy-4-methyl-2-pentanone (B) and 4-methylpent-3-en-2-one (C), and smaller amounts of other organic products derived by condensation or related reactions of acetone. The presence of C, apparently arising by dehydration of B, points to the formation of 1 equiv. of H2O in the reaction system. Use of acetone-d6 in conjunction with 1(OTf) gives 2(OTf) containing no deuterium, as well as 1 equiv. of each of (CD3)2CHOH/OD and (CD3)2CDOD/OH. Reactions of 1(OTf) with cyclohexanone, including cyclohexanone-2,2,6,6-d4, under comparable conditions, give analogous results. The ketones cyclopentanone, 2-butanone, and 3-pentanone also convert 1(OTf) to 2(OTf) upon heating, as does isobutyraldehyde, but only in the presence of the stabilizer BHT. In contrast, the more robust ketones 2,4-dimethyl-3-pentanone, 2,6-dimethylcyclohexanone, and 2-adamantanone, which do not undergo condensation, failed to effect this transformation. Other organooxygen compounds, i.e., methanol, cyclohexanol, 1,2-butene oxide, cyclohexene oxide, DMSO, and Me3NO, also are ineffective. A mechanism is proposed which begins with loss of H2 by 2 to give a 16-electron “[ReH4(Cyttp)]+” which, depending on the experimental conditions, binds a solvent or ligand molecule. A [ReH4(R2CO)(Cyttp)]+ intermediate generated in this manner reacts spontaneously by elimination of R2CHOH (containing methine hydrogen even when deuteriated ketone is used), which results from transfer of two hydride ligands to coordinated ketone. Continued reaction leads to the formation of 2 and another molecule of R2CHOH (containing methine deuterium when deuteriated ketone is employed), with the added hydrogens coming from H2O, which derives from solvent/reactant ketone.  相似文献   

9.
Solid heterospin compounds based on Cu(hfac)2 complexes with a new group of nitronyl nitroxides bearing different azine-N-oxide substituents at position 2 of the 2-imidazoline ring (Ln) were studied. The major factor responsible for the change in the magnetic characteristics of the [Cu(hfac)2L1] complex with triazine nitronyl nitroxide with temperature was shown to be the specific pairwise packing of heterospin molecules with the dominant antiferromagnetic exchange between the radical fragments of adjacent molecules. For complexes of Cu(hfac)2 with 1-oxoazin-2-yl-substituted nitronyl nitroxides L2 and L4, 7-membered metallocycles were obtained, although they form rarely. It was shown that polymer chains formed in the solid complex with spin-labeled pyrazine-N-oxide [(Cu(hfac)2)3(L3)2] due to the cross-linking of {(Cu(hfac)2)2(L3)2} binuclear fragments via the bridging [Cu(hfac)2].  相似文献   

10.
It was established that the reactions of pyrazol-3-yl-substituted nitronyl nitroxide (HL1) and pyrazol-3-yl-substituted imino nitroxide (HL3) with Cu(II) acetate lead to self-assembly of the Cu4(OH)2(OAc)4(DMF)2(L1)2 tetranuclear and Cu2(OAc)2(H2O)2(L3)2 dinuclear complexes, respectively. The reaction of Cu(II) acetate with 5-ethoxycarbonyl-pyrazol-3-yl-substituted nitronyl nitroxide (HL2) gave unexpected solid Cu2(H2O)2(L6)2 · 2DMF, in which L6 is a deprotonated 5-carboxy-pyrazol-3-yl-substituted nitronyl nitroxide, formed as a result of cleavage of an ester bond in the starting HL2. A similar transformation of the paramagnetic ligand was observed in the reaction of Cu(II) acetate with 5-ethoxycarbonyl-pyrazol-3-yl-substituted imino nitroxide (HL4). It led to the formation of Cu2(DMF)2(L7)2, where L7 is deprotonated 2-(5-carboxy-1H-pyrazol-3-yl)-4,4,5,5-tetramethyl-4,5-dihydro-1H-imidazole 3-oxide. An X-ray diffraction study indicated that in Cu4(OH)2(OAc)4(DMF)2(L1)2 and Cu2(OAc)2(H2O)2(L3)2, the L1 and L3 paramagnetic ligands perform the bridging cyclic tridentate function, while in Cu2(H2O)2(L6)2 · 2DMF and Cu2(DMF)2(L7)2, the paramagnetic L6 and diamagnetic L7 are bridging bicyclic tetradentate ligands. The magnetic behavior of complexes with coordinated nitronyl nitroxide – Cu4(OH)2(OAc)4(DMF)2(L1)2 and Cu2(H2O)2(L6)2 · 2DMF is dictated by the dominant antiferromagnetic exchange interactions, which is confirmed by quantum-chemical data. The magnetic susceptibility of Cu2(OAc)2(H2O)2(L3)2 reflects the competition between the antiferromagnetic and ferromagnetic components, of which the latter is due to electron coupling in the Cu(II) ← N=C–N ? O exchange channels. EPR data confirm the results received from static magnetic measurements for multispin solids.  相似文献   

11.
The ion-selective properties of 1,8-bis[2-(dihydroxyphosphinyl)phenoxy]-3,6-dioxaoctane (H4L3) have been studied and its potentiometric selectivity coefficients have been determined. New complexes [Cu(H4L3)(H2O)3][(H2L3)(H2O)] (I) and Zn(H4L3)(H2L3) · 3H2O, and Cu(H2L3) · 2(H2O) have been synthesized and characterized. The crystal and molecular structure of I has been determined by X-ray crystallography and vibrational spectroscopy. The crystals are monoclinic, a = 10.279(5) Å, b = 26.532(13) Å, c = 8.399(4) Å, β = 99.270(8)°, V = 2260.8(7) Å3, Z = 2, space group Cm, R = 0.0347 for 4325 reflections with I > 2σ(I). Ionic compound I is composed of the [Cu(H4L3)(H2O)3]2+ complex cations and [(H2L3)(H2O)]2? anions. In the cation, the Cu2+ cation located in the m plane is bound to a tetragonal pyramidal (TP) array. The equatorial plane of the TP is formed by two phosphoryl oxygen atoms of the podand (Cu(1)-O, 1.921(2) Å) and two O atoms of two water molecules (av. Cu(1)-O, 1.981(3) Å). The third water molecule is at the axial vertex of the TP at a considerably larger distance (Cu(1)-O, 2.139(3) Å). The anion is of the host-guest type. The host is the deprotonated podand (H2L3)2?, and the guest is the water molecule. The latter is bound to the terminal hydroxyl groups of two phosphoryl groups of the podand by two acceptor hydrogen bonds and to two central ether oxygen atoms of the (H2L3)2? anion by one donor bifurcated hydrogen bond. The cations and anions in the structure are linked by hydrogen bonds to form chains parallel to the c axis.  相似文献   

12.
N-(2-Hydroxybenzyl)aminopyridines (Li) react with Cu(II) and Pd(II) ions to form complexes in the compositions Cu(Li)2(CH3COO)2 · nH2O (n = 0, 2, 4), Pd(Li)2Cl2 · nC2H5OH (n = 0, 2) and Pd(L2)2Cl2 · 2H2O. In the complexes, the ligands are neutral and monodentate which coordinate through pyridinic nitrogen. Crystal data of the complexes obtained from 2-amino pyridine derivative have pointed such a coordinating route and comparison of the spectral data suggests the validity of similar complexation modes of other analog ligands. Cu(II) complex of N-(2-hydroxybenzyl)-2-aminopyridine (L1), [Cu(L1)2(CH3COO)2] has slightly distorted square planar cis-mononuclear structure which is built by two oxygen atoms of two monodentate carboxylic groups disposed in cis-position and two nitrogen atoms of two pyridine rings. The remaining two oxygen atoms of two carboxylic groups form two Cu and H bridges containing cycles which joint at same four coordinated copper(II) ion. IR and electronic spectral data and the magnetic moments as well as the thermogravimetric analyses also specify on mononuclear octahedric structure of complexes [Cu(L2)2(CH3COO)2 · 2H2O] and [Cu(L3)2(CH3COO)2 · 4H2O] where L2 and L3 are N-(2-hydroxybenzyl)-2- or 3-aminopyridines, respectively.  相似文献   

13.
Three novel polymers, {[Cd(m-bdc)(L)]·H2O}n (1), [Co(m-bdc)(L)0.5(H2O)]n (2) and [Zn5(L)2(p-bdc)5(H2O)]n (3) based on 1,1′-bis(pyridin-3-ylmethyl)-2,2′-biimidazole (L) ligand and benzenedicarboxylate isomers, have been prepared and structurally characterized. Compound 1 exhibits a 2D architecture with (42·6)(42·67·8) topology, which is synthesized by L and 1,3-benzenedicarboxylate (m-bdc) ligands. Compound 2 is constructed from 1D chains that are linked by L ligands extending a 2D (4,4) grid. Compound 3 is a 3D framework with (43)(46·618·84) topology, which is composed of trinuclear clusters and five-coordinated metal centers joined through 1,4-benzenedicarboxylate (p-bdc) and L ligands. Moreover, the fluorescent properties of L ligand, compounds 1 and 3 are also determined.  相似文献   

14.
K2ReH9, a Redetermination of the Structure The crystal structure of K2ReH9 was redetermined on a single crystal via neutron diffraction (four circle diffractometer TAS2, 364 symmetrically independent reflections). The atomic arrangement determined by Abrahams et al. in 1964 could be confirmed in its essentials (Space group P62m, Z = 3). Nevertheless the structural parameters, which are much more precise now, yield positions of the hydrogen atoms showing that the co-ordination polyhedra of the two crystallographically independent [ReH92–] – units are identical within the accuracy of the measurement. The results confirm the formula K2ReH9, an average structure with lower hydrogen content and statistically occupied hydrogen positions can be ruled out.  相似文献   

15.
Mixed-ligand hydride ReH2(NO)L(PPh3)2 complexes [L=P(OEt)3 or PPh(OEt)2] were prepared by allowing the ReH2(NO)(PPh3)3 species to react with an excess of phosphite. Treatment of ReH2(NO)L(PPh3)2 hydrides with an equimolar amount of aryldiazonium cations ArN2+ gives the mono-aryldiazene [ReH(ArNNH)(NO)L(PPh3)2]BPh4 complexes (Ar=C6H5, 4-CH3C6H4), while treatment with an excess of ArN2+ yields bis(aryldiazene) [Re(ArNNH)2(NO)L(PPh3)2](BPh4)2 derivatives. Binuclear [{ReH(NO)L(PPh3)2}2(μ-HNNArArNNH)](BPh4)2 and [{Re(4-CH3C6H4NNH)(NO)L(PPh3)2}2(μ-HNNArArNNH)](BPh4)4 complexes (ArAr=4,4′-C6H4C6H4, 4,4′-C6H4CH2C6H4) were also prepared. The reaction of the triphenylphosphine ReH2(NO)(PPh3)3 complex with aryldiazonium cations was studied and led exclusively to mono-aryldiazene [ReH(ArNNH)(NO)(PPh3)3]BPh4 and [{ReH(NO)(PPh3)3}2(μ-HNNArArNNH)](BPh4)2 derivatives. The complexes were characterised spectroscopically (IR, NMR) using the 15N-labelled derivatives. The aryldiazenido [ReH(C6H5N2){PPh(OEt)2}4]BPh4 complex was prepared by allowing trihydride ReH3[PPh(OEt)2]4 to react with phenyldiazonium tetrafluoroborate. A reaction path involving the aryldiazene [ReH2(C6H5NNH){PPh(OEt)2}4]+ intermediate was also proposed.  相似文献   

16.
Bis(triphenylphosphine)(η-cyclohexa-1,3-diene)rhenium trihydride, (Ph3P)2(η-C6H8)ReH3 (I) crystallises in the space group C2/c with cell dimensions a 22.76(2), b 10.14(1) c 29.813(6) Å, β 97.69(8)°. The final refinement of 126 variables using 1580 non-zero reflections resulted in a final R value of 0.064. In spite of uncertainties in some of the atomic positions, the structure of I is compatible with a trihydrido diene compound with a distorted pentagonal bipyramidal configuration, rather than with a dihydrido cyclohexenyl compound having an “agostic” CH ? Re interaction. The factors which govern the structure of the complexes (Ph3P)2(η-1,3-diene)ReH3 are discussed.  相似文献   

17.
The complex cis-[Ru(Lpy)NO]3+ (I) (Lpy = N-(2-methylpyridyl)1,4,8,11-tetraazacyclotetradecane) was prepared by the stoichiometric reaction between Ru(dmso)4Cl2 and Lpy and an excess of NaNO2 in ethanolic medium, followed by acidification of the solution. The diamagnetic species was isolated as its hexafluorophosphate salt, and fully characterized by IR (νNO = 1917 cm−1) and diverse NMR techniques in combination with theoretical computations based on the density functional theory (DFT). The compound displays strong electronic transitions below 300 nm and weak ones in the visible region of the spectrum, all of them solvent insensitive. The reaction of cis-[Ru(Lpy)NO]3+ with OH generates the strongly colored nitro compound cis-[Ru(Lpy)NO2]+ (II) The {RuNO}6 compound can be interconverted into the one-electron reduced {RuNO}7 species cis-[Ru(Lpy)NO]2+ (III). The reduction process is completely reversible in the cyclic voltammetry timescale with E0 (versus Ag/AgCl, 3 M Cl) = −0.02 V and 0.18 V in water and acetonitrile, respectively. Controlled potential reduction in both solvents yields to the quantitative formation of III, a process which involves significant changes in the electronic spectroscopy. The {RuNO}7 species proved to be inert against ligand loss, and electrogenerated solutions remained unchanged for several hours if protected from atmospheric oxygen. Electrochemical reoxidation or exposure to air lead to the complete recovery of the starting cis-[Ru(Lpy)NO]3+ material, without signs of secondary reactions. The robustness of the coordination sphere appears as a consequence of the multidentate nature of Lpy.  相似文献   

18.
The η-pyrrolyl complex (η-C4H4N)(Ph3P)2ReH2 (1) was prepared from (Ph3P)2ReH7, 3,3-dimethyl-1-butene and pyrrole, and treated with I2-K2CO3 to give (η-C4H4N)(Ph3P)2ReHI (2). This was treated with PhLi to give (η-2-PhC4H3N)(Ph3P)2ReH2 (3) in high yield. Repeated treatment of 3 with I2-K2CO3 and PhLi gave (η-2,5-Ph2C4H2N)(Ph3P)2ReH2 (4) which was converted into 2,5-diphenylpyrrole, 1-methyl-2,5-diphenylpyrrole and 1-benzoyl-2,5-diphenylpyrrole.  相似文献   

19.
The reactions of [(η7-C7H7)Hf(η5-C5H5)] (1b) with the two-electron donor ligands tert-butyl isocyanide (tBuNC), 2,6-dimethylphenyl isocyanide (XyNC), 1,3,4,5-tetramethylimidazolin-2-ylidene (IMe) and trimethylphosphine (PMe3) are reported. The 1:1 complexes [(η7-C7H7)Hf(η5-C5H5)L] (2b, L = tBuNC; 3b, L = XyNC; 4b, L = IMe, 5b, L = PMe3) have been isolated in crystalline form, and their molecular structures have been determined by X-ray diffraction analyses. The stabilities of these hafnium complexes were probed via spectroscopic and theoretical methods, and the results were compared to those previously reported for the corresponding zirconium complexes derived from [(η7-C7H7)Zr(η5-C5H5)] (1a). The X-ray crystal structure of the PMe3 adduct [(η7-C7H7)Zr(η5-C5H5)(PMe3)] (5a) was also established.  相似文献   

20.
《Polyhedron》2001,20(22-23):2829-2840
The complexes [M(L1R)2](BF4)2 (M=Ni, Co; L1R=2,6-dipyrazol-1-ylpyridine [L1H], 2,6-bis-{3-iso-propylpyrazol-1-yl}pyridine [L1Pri], 2,6-bis-{3-phenylpyrazol-1-yl}pyridine [L1Ph], 2,6-bis-{3-[2,4,6-trimethylphenyl]pyrazol-1-yl}pyridine [L1Mes]) and [M(L2)2](BF4)2 (M=Ni, Co; L2=2-{3-[2,4,6-trimethylphenyl]pyrazol-1-yl}-6-{5-[2,4,6-trimethylphenyl]pyrazol-1-yl}pyridine) have been prepared. Single crystal structure determinations of [M(L1H)2](BF4)2 (M=Ni, Co) and solvates of [Ni(L1Mes)2](BF4)2, [Co(L1Mes)2](ClO4)2 and [Co(L2)2](BF4)2 all show six-coordinate metal centres with local near-D2d symmetry. The L1Mes and L2 mesityl substituents have only a small effect on the MN{pyrazole} (M=Ni, Co) bond lengths in these compounds. The dd spectra of the complexes show that L1Mes is a significantly better donor ligand than L1H, L1Pri or L1Ph, and that L1Pri is a weaker ligand than might be expected purely on inductive grounds. A combination of UV–Vis/NIR, EPR, NMR and magnetic measurements have demonstrated that all the Co(II) compounds are high-spin in the solid state and in solution at 290 K.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号