首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 578 毫秒
1.
罗庆洪  陆永浩  娄艳芝 《物理学报》2011,60(8):86802-086802
利用反应磁控溅射方法在单晶硅和高速钢(W18Cr4V)基片上制备出不同C含量Ti-B-C-N纳米复合薄膜. 使用X射线衍射和高分辨透射电子显微镜研究了Ti-B-C-N纳米复合薄膜的组织和微观结构,用纳米压痕仪测试了它们的硬度和弹性模量. 结果表明,利用往真空室通入C2H2气体的方法制备得到的Ti-B-C-N纳米复合薄膜中,在所研究成分范围内只发现TiN基的纳米晶. 当C2H2流量较小时,C元素的加入可以促进Ti-B-C 关键词: Ti-B-C-N薄膜 磁控溅射 微观结构 力学性能  相似文献   

2.
The special features of the elemental composition, structure-phase and elastically stressed states, and properties of coatings based on titanium nitride are investigated for different concentrations of Al, Si, Cu, Ni, Cr, and C doping elements using x-ray fluorescent analysis, x-ray microanalysis, dark-field electronmicroscopic analysis of the crystal lattice bending and torsion, microhardness measurements, and scratch tests. Influence of the structure and concentration of the doping elements on the relative fraction of nonmetallic atoms, crystal size, and phase composition of the coating is established. High values (several hundred degrees per micron) of the lattice bending-torsion with dipole configuration are established for nanocrystals with sizes smaller than 20 nm. Residual stresses in nanocrystals are estimated for the disclination model of the structural state. It is demonstrated that the increased degree of coating doping improves the thermal stability of their structure and properties.  相似文献   

3.
Electron microscopy, x-ray diffraction analysis, and micro-and nanohardness measurements were used to investigate the interrelations between the fine structure and the variations in strength properties of nanostructured and nanocomposite Ti-Si-B-N coatings with high oxygen and carbon contents. It has been shown that under the conditions of low-temperature (T = 200°C) coating deposition, a two-level grain structure forms with {200} texture and grains 0.1–0.3 μm in size fragmented into subgrains 15–20 nm in size. As the silicon content is increased, textureless coatings with the crystal phase grain size less than 15 nm and high amorphous component or coatings of amorphous-crystalline structure are produced. At coating deposition temperatures of 400–450°C, a nanocomposite structure with a grain size d = 10–15 nm and no texture is observed. For all test compositions and conditions of coating production, a Ti 1−x Si x N crystal phase with the lattice parameter a = (0.416–0.420) ± 0.001 nm has been detected. For optimum coating compositions and synthesis conditions, the hardness is over 40–50 GPa. It has been supposed that superhardness can be attained with multiphase grain-boundary interlayers of thickness more than 1 nm. __________ Translated from Izvestiya Vysshikh Uchebnykh Zavedenii, Fizika, No. 10, pp. 13–23, October, 2007.  相似文献   

4.
The radiation resistance of nanostructured TiN, TiAlN, and TiAlYN coatings is studied after 500-keV He+ ion irradiation in the fluence range 5 × 1016–3 × 1017 ions/cm2. The radiation-induced changes in the phase composition, the structure, the lattice parameters, the morphology, and the mechanical properties of coatings are investigated. Blistering is found to be absent, and the radiation fluence is shown to affect the strength properties of the thin coatings nonlinearly. A significant decrease in the grain sizes is detected upon ion irradiation, which causes an increase in the microhardness and the radiation resistance of the coatings. The TiN, TiAlN, and TiAlYN coatings are found to be radiation-resistant coatings, which do not undergo serious degradation during high-fluence ion irradiation.  相似文献   

5.
The microstructural peculiarities of Nb powder and Nb + Al powder mixtures after mechanical activation in a high-energy planetary ball mill were investigated by transmission electron microscopy. The materials revealed two-level structural states: nanograins of size from 50 to 100 nm that contain subgrains of size ~20 nm and less with low-angle misorientation boundaries, elastic lattice curvature gC ij ≈100°…200°μm?1, curl or curvature gradient ij /? r > 100 μm?2 and high (up to 10E μm?1) local stress gradients (couples). An important factor in the formation of the above states is the capability of nano-objects to reach high elastic lattice curvature, high gradients of this curvature, and high local internal stress gradients at rather low absolute values of the internal stress.  相似文献   

6.
A simple and highly efficient method is developed for the one-step in situ preparation of carbon-encapsulated MoO2 nanocrystals (MoO2@C) with core-shell structure for high-performance lithium-ion battery anode. The synthesis is depending on the solid-state reaction of cyclopentadienylmolybdenum tricarbonyl dimer with ammonium persulfate in an autoclave at 200 °C for 30 min. The large amount of heat generated during the explosive reaction cleaves the cyclopentadiene ligands into small carbon fragments, which form carbon shell after oxidative dehydrogenation coating on the MoO2 nanocrystals, resulting in the formation of core-shell structure. The MoO2 nanocrystals have an equiaxial morphology with an ultrafine diameter of 2–8 nm, and the median size is 4.9 nm. Hundreds of MoO2 nanocrystals are encapsulated together by the worm-like carbon shell, which is amorphous and about 3–5 nm in thickness. The content of MoO2 nanocrystals in the nanocomposite is about 69.3 wt.%. The MoO2@C anode shows stable cyclability and retains a high reversible capacity of 443 mAh g?1 after 50 cycles at a current density of 3 A g?1, owing to the effective protection of carbon shell.  相似文献   

7.
A simple and highly efficient method is developed for in situ one-step preparation of carbon co-encapsulated anatase and rutile TiO2 nanocrystals (TiO2@C) with core-shell structure for lithium-ion battery anode. The synthesis is depending on the solid-phase reaction of titanocene dichloride with ammonium persulfate in an autoclave at 200 °C for 30 min. The other three titanocene complexes including bis(cyclopentadienyl)dicarbonyl titanium, cyclopentadienyltitanium trichloride, and cyclopentadienyl(cycloheptatrienyl)titanium are used instead to comprehensively investigate the formation mechanism and to improve the microstructure of the product. The huge heat generated during the explosive reaction cleaves the cyclopentadiene ligands into small carbon fragments, which form carbon shell after oxidative dehydrogenation coating on the TiO2 nanocrystals, resulting in the formation of core-shell structure. The TiO2 nanocrystals prepared by titanocene dichloride have an equiaxed morphology with a small diameter of 10–55 nm and the median size is 30.3 nm. Hundreds of TiO2 nanocrystals are encapsulated together by the worm-like carbon shell, which is amorphous and about 20–30 nm in thickness. The content of TiO2 nanocrystals in the nanocomposite is about 31.1 wt.%. This TiO2@C anode shows stable cyclability and retains a good reversible capacity of 400 mAh g?1 after 100 cycles at a current density of about 100 mA g?1, owing to the enhanced conductivity and protection of carbon shell.  相似文献   

8.
In this paper, we present the result of TiN nanocrystalline deposition on SS316L, using a 4 kJ plasma focus (PF) device for 10, 20, and 30 focus shots. The effect of different number of focus shots on micro-structural changes of thin film is characterized by field emission scanning electron microscope. Existence of grains in different size confirms the formation of TiN nanocrystals on the surface of SS316L substrate. X-ray diffraction (XRD) reveals the formation of a nanocrystalline titanium nitride coating on the surface of SS316L samples. The crystalline size of TiN obtained from XRD data is strongly dependent on the number of focus shots. Thickness of the elements found on the surface of the treated sample that obtain by Rutherford backscattering spectroscopy (RBS) analysis is in the range of 150×1015?200×1015 atoms/cm2. All the existence elements in the coated samples are identified by Particle Induced X-ray Emission (PIXE) spectra. Investigation on the corrosion resistance of TiN coatings was performed using an electrochemical potentiodynamic polarization. Our results suggest that TiN nanocrystalline implantation with proper ion fluences using PF can significantly improve the corrosion resistance of SS316L.  相似文献   

9.
Heterogeneous coatings have been deposited by the cold gas-dynamic spraying of mechanically synthesized AMg2/graphite + Al2O3 powders. A specific feature of the coatings formed is the existence of a two-level micro-and nanocomposite structure. It has been established that an increase in the content of microsized Al2O3 particles in the mixture from 10 to 30 wt % produces a twofold increase in the thickness of the coating deposited for the same time period from 140 to 310 μm. A further growth in the content of microsized Al2O3 particles in the mixture up to 50 wt % leads to a decrease in the thickness of the coating formed to 40 μm. The manufactured coatings have a high microhardness ranging from 1.7 to 3.2 GPa depending on their composition. The high microhardness of these coatings is caused by an increase in the hardness of the matrix material due to the creation of a nanocomposite structure, which strengthens the immobilization of microsized Al2O3 particles in it, thus improving the properties of the heterogeneous coating as a whole.  相似文献   

10.
The objective of this study was to characterize cellulose nanocrystals /TPS-based nanocomposites. Nanocrystalline cellulose was isolated from cotton linters using sonochemical method and characterized through WXRD, TEM, and FTIR. These nanocrystals were then dispersed in glycerol and sorbitol plasticized starch using a Fluko high shear homogenizer in varying proportions and films were cast. The films were characterized using WXRD, SEM, and mechanical properties. TEM images of nanocrystals revealed a diameter of 20–30 nm and length 200–300 nm. XRD results for nanocomposite films for both the plasticizers showed 2θ peaks at 14.8°, 16.7,° and 22.5°. Elastic modulus increased with addition of cellulose nanocrystals and tan δ shifted toward higher temperature for both the plasticizers. Mechanical properties improved more than 200% for both glycerol and sorbitol plasticized nanocomposites.  相似文献   

11.
The simultaneous laser ablation of two targets (graphite and titanium) in an Ar-N2 gas mixture was carried out to deposit thin films of the ternary compound TiCN at room temperature. The base conditions used to produce the TiN without carbon were taken from our previous studies. The experimental conditions for the ablation of the carbon target were varied so that the carbon content in the films could be changed depending on the carbon ion energy. The control of the experimental conditions was carried out using a Langmuir planar probe which permitted the determination of the mean kinetic ion energy. The maximum hardness value of 35 GPa, was obtained with a carbon ion energy of about 250 eV, which corresponds to a film with 5 at% carbon content. In order to perform tribological and scratch tests, two types of substrate were used: nitrided AISI 316 stainless steel and AISI 316 stainless steel previously coated with a thin titanium layer (~50 nm). Values of the wear rate in the range of 1.39×10?6 to 7.45×10?5 mm3?N?1?m?1, friction coefficient from 0.21 to 0.28 and adhesion from scratch test measurements up to 80 N for final critical load, were obtained.  相似文献   

12.
Coatings of the composition of 310S heat-resisting steel dopped Al and Ir additions, deposited on a substrate of the same steel by the magnetron sputtering method, were examined. The measurements were made in the classical Bragg-Brentano geometry and by the GXRD method. With the fixed and different position of the coated sample by rotating the sample by angles ψ. The coating as deposited and after being soaked at 400°C for 15 minutes was subjected to examinations. The examination carried out have shown that coatings may have a unique, subtle structure which is metastable and undergoes irreversible changes in the temperatures up to 400°C. It has been found that in the outermost coating zones and zones closer to the substrate, areas occur in the coating structure, which have the different lattice parameter compared to the basic phase. Additionaly, the local period of the structure equal 5.9 nm was found.  相似文献   

13.

A novel, facile, catalyst-free, and low temperature process for the synthesis of discrete anatase TiO2 nanocrystals has been developed in the absence of stabilizing agent. The product was shown to be discrete anatase TiO2 nanocrystals with a mean diameter of 4.97 ± 0.9 nm and a specific surface area of 393 m2/g. By varying the water content and precursor concentration, the particle size could be tuned. Also, the resultant colloid solution was quite stable even in the absence of stabilizing agent because of the coverage of EG molecules on the particle surface. In addition, the anatase TiO2 nanocrystals obtained in this work had highly thermal stability even at temperatures up to 800 °C. Also, as compared to Degussa P25 TiO2 powders, they exhibited stronger absorption at 200–350 nm and higher transmittance in the visible light region. Thus, the new approach proposed in this work was practicable for the synthesis of anatase TiO2 nanocrystals, particularly for those requested to have highly thermal stability and UVC-cut capability.

  相似文献   

14.
Advances in materials performance often require the development of composite system. In the present investigation, SiO2-reinforced nickel composite coatings were deposited on a mild steel substrate using direct current electrodeposition process employing a nickel acetate bath. Surface morphology, composition, microstructure and crystal orientation of the Ni and Ni-SiO2 nanocomposite coatings were investigated by scanning electron microscope, energy dispersive X-ray spectroscopy and X-ray diffraction analysis, respectively. The effect of incorporation of SiO2 particles in the Ni nanocomposite coating on the microhardness and corrosion behaviour has been evaluated. Smooth composite deposits containing well-distributed silicon oxide particles were obtained. The preferred growth process of the nickel matrix in crystallographic directions <111>, <200> and <220> is strongly influenced by SiO2 nanoparticles. The average crystallite size was calculated by using X-ray diffraction analysis and it was ~23 nm for electrodeposited nickel and ~21 nm for Ni-SiO2 nanocomposite coatings. The crystallite structure was fcc for electrodeposited nickel and Ni-SiO2 nanocomposite coatings. The incorporation of SiO2 particles into the Ni matrices was found to improve corrosion resistance of pure Ni coatings. The corrosion potential (E corr) in the case of Ni-SiO2 nanocomposite coatings had shown a negative shift, confirming the cathodic protective nature of the coating. The Ni-SiO2 composite coatings have exhibited significantly improved microhardness (615 HV) compared to pure nickel coatings (265 HV)  相似文献   

15.
Ti-B-C-N nanocomposite coatings with different C contents were deposited on Si (1 0 0) and high speed steel (W18Cr4V) substrates by closed-field unbalanced reactive magnetron sputtering in the mixture of argon, nitrogen and acetylene gases. These films were subsequently characterized ex situ in terms of their microstructures by X-ray diffraction (XRD) and high-resolution transmission electron microscopy (HRTEM), their nanohardness/elastic modulus and facture toughness by nano-indention and Vickers indentation methods, and their surface morphology using atomic force microscopy (AFM). The results indicated that, in the studied composition range, the deposited Ti-B-C-N coatings exhibit nanocomposite based on TiN nanocrystallites. When the C2H2 flow rate is small, incorporation of small amount of C promoted crystallization of Ti-B-C-N nanocomposite coatings, which resulted in increase of nano-grain size and mechanical properties of coatings. A maximum grain size of about 8 nm was found at a C2H2 flux rate of 1 sccm. However, the hardness, elastic modulus and fracture toughness values were not consistent with the grain size. They got to their maximum of 35.7 GPa, 363.1 GPa and 2.46 MPa m1/2, respectively, at a C2H2 flow rate of 2 sccm (corresponding to about 6 nm in nano-grain size). Further increase of C content dramatically decreased not only grain size but also the mechanical properties of coatings. The presently deposited Ti-B-C-N coatings had a smooth surface. The roughness value was consistent with that of grain size.  相似文献   

16.
采用5 kW CO2激光器在低碳钢表面熔覆Co基合金涂层及TiN/Co基合金复合涂层,研究了两种涂层的组织、显微硬度以及滑动磨损性能。结果表明,Co基合金涂层主要组成相为-γCo,-εCo,Cr23C6等,TiN/Co基合金复合涂层组成相为-γCo,-εCo,Cr23C6,TiN和TiC等。Co基合金涂层由发达的-γCo枝晶和其间共晶组织所组成,TiN/Co基合金涂层典型组织为等轴固溶体以及细小的共晶组织。TiN对熔覆层的组织有显著的改善作用,促使其组织细化,树枝晶向等轴晶转化,同时可显著提高Co基合金涂层的显微硬度及耐磨性能。  相似文献   

17.
34 Si23N43 (b3) and Ti35Si13N52 (c3), are synthesized by reactively sputtering a Ti5Si3 or a Ti3Si target, respectively. The silicon-lean film (c3) has a columnar structure closely resembling that of TiN. As a diffusion barrier between a shallow Si n+p junction diode and a Cu overlayer, this material is effective up to 700 °C for 30 min annealing in vacuum, a performance similar to that for TiN. The silicon-rich (b3) film contains nanocrystals of TiN, randomly oriented and embedded in an amorphous matrix. A film of (b3) maintains the stability of the same diode structure up to 850 °C for 30 min in vacuum. This film (b3) is clearly superior to TiN or to (c3). Similar experiments performed with Al instead of Cu overlayers highlight the importance of the thermodynamic stability of a barrier layer and demonstrate convincingly that for stable barriers the microstructure is a parameter that directly determines the barrier performance. Received: 18 November 1996/Accepted: 22 January 1997  相似文献   

18.

The structural and mechanical properties of TiN coatings prepared by ion beam assisted deposition (IBAD) were studied. The coatings have a polycrystal structure with grain size of ≈10nm or less. The hardness of the coatings increases with increasing grain size of TiN crystallites. The coating with grain size of 10.3 nm even has a superhardness of 44.7 GPa. The relationship between the hardness and the grain size in the nano-crystalline coatings was discussed on the basis of grain-boundary triple junctions.

  相似文献   

19.
Nanocrystalline CeO2 samples have been manufactured using sol-gel techniques, containing either 15 % silica or 10 % alumina by weight to restrict growth of the ceria nanocrystals during annealing by Zener pinning. 29Si and 27Al MAS NMR have been used to investigate the structure of these pinning phases over a range of annealing temperatures up to 1000 °C, and their effect on the CeO2 morphology has been studied using electron microscopy. The silica pinning phase resulted in CeO2 nanocrystals of average diameter 19 nm after annealing at 1000 °C, whereas the alumina pinned nanocrystals grew to 88 nm at the same temperature. The silica pinning phase was found to contain a significant amount of inherent disorder indicated by the presence of lower n Qn species even after annealing at 1000 °C. The alumina phase was less successful at restricting the growth of the ceria nanocrystals, and tended to separate into larger agglomerations of amorphous alumina, which crystallised to a transition alumina phase at higher temperatures.  相似文献   

20.
TiN和Ti1-xSixNy薄膜的微观结构分析   总被引:2,自引:0,他引:2       下载免费PDF全文
使用x射线衍射(XRD)、x射线光电子谱(XPS)、高分辨透射电子显微镜(HRTEM)和原子力显微镜(AFM)多种观测手段分析了TiN薄膜和Ti1-xSixNy纳米复合薄膜的微观结构.实验分析证明Ti1-xSixNy薄膜是由直径为3—5nm的纳米晶TiN和非晶Si3N4相构成,并且Ti1-xSix关键词: 纳米复合薄膜 自由能 表面粗糙度 TiN 1-xSixNy')" href="#">Ti1-xSixNy  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号