首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 22 毫秒
1.
A detailed investigation of the electrochemistry of Ir in 0.5 M H2SO4 has been used as an experimental basis for a model for oxide growth at Ir. It appears that a compact oxide (probably IrO2) is formed initially. At potentials above + 1.2 V vs. RHE, the outer monolayer of this compact oxide is oxidised and becomes hydrated. The hydrated surface layer inhibits further oxidation of the compact oxide and therefore only one monolayer of hydrous oxide can be formed at constant potential. To obtain more hydrous oxide than this, the compact oxide must be continually reduced to Ir metal and reformed, by cycling of the potential. On each cycle, the hydrated surface layer of the compact oxide remains after reduction of the compact oxide. Thus, this material accumulates as a hydrous oxide layer.  相似文献   

2.
The reduction of thick oxide films, produced anodically on gold under constant potential conditions in the oxygen gas evolution region, was examined as a function of sweep-rate in both acid and base. Although peak maxima potential values for the reduction reactions were not totally independent of sweep-rate, even at very low values of the latter, the earlier assumption that the film is composed of at least two (and in some cases, according to the present results, as many as five) different oxygold species was shown to be a reasonable one. The other assumption, namely that the hydrous film in the case of gold is anionic (due to excess hydroxide-ion incorporation) was also shown to be a reasonable one by comparison with recent work with hydrous nickel oxide films for which structural data is available. In these systems counterbalancing cations (H+, Na+, etc.) are assumed to be present in water contained in pores or layers in the structure. Furthermore, the unusual potential-pH dependence of the hydrous film reduction process can easily be explained in terms of the excess hydroxide incorporation model.  相似文献   

3.
Outstanding issues regarding the film formation, redox switching characteristics and the oxygen evolution reaction (OER) electrocatalytic behaviour of multicycled iron oxyhydroxide films in aqueous alkaline solution have been revisited. The oxide is grown using a repetitive potential multicycling technique, and the mechanism of the latter hydrous oxide formation process has been discussed. A duplex layer model of the oxide/solution interphase region is proposed. The acid/base behaviour of the hydrous oxide and the microdispersed nature of the latter material has been emphasised. The hydrous oxide is considered as a porous assembly of interlinked octahedrally coordinated anionic metal oxyhydroxide surfaquo complexes which form an open network structure. The latter contains considerable quantities of water molecules which facilitate hydroxide ion discharge at the metal site during active oxygen evolution, and also charge compensating cations. The dynamics of redox switching has been quantified via analysis of the cyclic voltammetry response as a function of potential sweep rate using the Laviron-Aoki electron hopping diffusion model by analogy with redox polymer modified electrodes. Steady state Tafel plot analysis has been used to elucidate the kinetics and mechanism of oxygen evolution. Tafel slope values of ca. 60 mV dec(-1) and ca. 120 mV dec(-1) are found at low and high overpotentials respectively, whereas the reaction order with respect to hydroxide ion activity changes from ca. 3/2 to ca. 1 as the potential is increased. These observations are rationalised in terms of a kinetic scheme involving Temkin adsorption and the rate determining formation of a physisorbed hydrogen peroxide intermediate on the oxide surface. The dual Tafel slope behaviour is ascribed to the potential dependence of the surface coverage of adsorbed intermediates.  相似文献   

4.
The formation of thick hydrous oxide films on platinum under triangular potential cycling conditions was investigated as a function of sweep-rate, sweep limits, and solution pH. A significant improvement in the procedure outlined earlier was the discovery that increasing the cycling rate (from ca. 5 to 100 V s?1) decreased the optimum upper limit (from ca. 2.8 to 2.2 V in acid) for thick film growth. Hydrous oxide growth was observed in both acid and base but not at intermediate pH values (ca. 4.0 to 9.0). For reasonably short cycling time (<15 min at 100 V s?1) loss of platinum due to dissolution was virtually negligible. One immediate practial application of the work is the activation (or reactivation) of platinum surfaces. A brief investigation of the methanol electrooxidation reaction at initially smooth platinum, activated by potential cycling, followed by cathodic reduction of the hydrous film, demonstrated that excellent control of the surface roughness and, hence, the level of electrocatalytic activity of the electrode surface was possible using this approach. An interesting fundamental point emerging from the work is that from a thermodynamic viewpoint platinum may be susceptible to oxidation to form an insoluble, highly hydrated species at quite low potentials (less than 0.0 V vs. RHE) in base. The reason why such species are not normally observed under positive, single-sweep conditions is probably due to the inability of the ligands involved (O, OH and OH2 species) to coordinate in a symmetrical manner about a platinum atom that is partially imbedded in a metal lattice.  相似文献   

5.
Barrier‐type anodic films 3–15 nm thick have been formed on electropolished 99.999% aluminium. Variable‐angle XPS has been used to identify a significant proportion of hydroxyl ions at the surface of the relatively compact alumina films. The location of an oxygen‐rich region at the outer surface of the oxide has been confirmed by medium‐energy ion scattering (MEIS). Combining the information from these two techniques leads to the conclusion that a hydroxyl‐containing surface region is responsible for this oxygen‐rich surface layer, MEIS revealing an approximately linear relationship between the total oxide thickness and the thickness of the hydroxyl‐rich surface region. From consideration of the mechanisms of amorphous alumina formation by ionic transport, with incorporation of electrolyte‐derived species into the thickening film, the generation of the hydroxyl‐rich outermost region is considered to result from the formation of gel‐like material at the film/electrolyte interface. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   

6.
Previous work on the electrochemistry of palladium in aqueous acid solution demonstrated the existence of two multilayer hydrous oxide reduction peaks, one at ca. 0.24 V and another at ca. 0.55 V vs. RHE, plus the presence of a reversible active surface state transition at ca. 0.24 V. In the present work with thermally activated palladium it was observed that, in agreement with the hydrous oxide reduction behaviour of the system, there is a second active state transition at E≥ca. 0.45 V. In most of its reactions in aqueous acid solution, apart from its unusual capacity to absorb hydrogen, palladium exhibits properties very similar to those of platinum; however, palladium seems to be more prone to dissolution and subsurface oxygen formation. Also the premonolayer oxidation responses of these two metals are often different as the more active state of the palladium surface is not as readily generated as that of platinum. The electrocatalytic properties of palladium, as reported earlier, correlate quite well with the hydrous oxide and premonolayer oxidation behaviour of this electrode system. Electronic Publication  相似文献   

7.
The higher harmonic components available from large-amplitude Fourier-transformed alternating current (FT-ac) voltammetry enable the surface active state of a copper electrode in basic media to be probed in much more detail than possible with previously used dc methods. In particular, the absence of capacitance background current allows low-level Faradaic current contributions of fast electron-transfer processes to be detected; these are usually completely undetectable under conditions of dc cyclic voltammetry. Under high harmonic FT-ac voltammetric conditions, copper electrodes exhibit well-defined and reversible premonolayer oxidation responses at potentials within the double layer region in basic 1.0 M NaOH media. This process is attributed to oxidation of copper adatoms (Cu*) of low bulk metal lattice coordination numbers to surface-bonded, reactive hydrated oxide species. Of further interest is the observation that cathodic polarization in 1.0 M NaOH significantly enhances the current detected in each of the fundamental to sixth FT-ac harmonic components in the Cu*/Cu hydrous oxide electron-transfer process which enables the underlying electron transfer processes in the higher harmonics to be studied under conditions where the dc capacitance response is suppressed; the results support the incipient hydrous oxide adatom mediator (IHOAM) model of electrocatalysis. The underlying quasi-reversible interfacial Cu*/Cu hydrous oxide process present under these conditions is shown to mediate the reduction of nitrate at a copper electrode, while the mediator for the hydrazine oxidation reaction appears to involve a different mediator or active state redox couple. Use of FT-ac voltammetry offers prospects for new insights into the nature of active sites and electrocatalysis at the electrode/solution interface of Group 11 metals in aqueous media.  相似文献   

8.
Novel glass electrodes for the determination of cations with reversible internal solid contact are introduced. They are based on a semiconducting zinc oxide layer with a maximum thickness of 1 μm in contact with ion selective glasses on one side and with a metal layer on the other side. The metal oxide layer is thereby generated either by ultrasonic spray pyrolysis from zinc acetate solution, by electrochemical deposition from zinc nitrate solution or by spin coating from a dispersion of ZnO in an organic binder. A following activation in a palladium chloride solution allows the chemical reductive deposition of NiP as electronic conductor. Dipping-type and flow through electrodes as well as planar glass electrodes in thick film technology fabricated in the above-mentioned method are described. In this case gold electrodes are applied by screen printing on isolated steel substrates. The zinc oxide layers, created in different manners, are covered afterwards with cation selective glasses in thick film technology. They cause a stabilisation of the half-cell potentials of the all solid state indicator electrodes proved by suitable measurements.  相似文献   

9.
To develop mechanistic models of contaminant distribution processes, we conducted an X-ray absorption fine structure analysis of strontium sorption to hydrous manganese oxide (HMO). Sr K-edge measurements were performed at 298, 220, and 77 K, and at sample loadings from 10(-4) to 10(-2) mol Sr/g HMO. Results from fitting the first shell in the sorbed samples indicate that strontium is surrounded by 10-12 oxygen atoms at an average distance of 2.58 ?. This coordination environment is consistent with the strontium atom remaining hydrated upon sorption to the oxide, where in water hydrated strontium has approximately 9 atoms of oxygen at 2.62 ?. Furthermore, the temperature dependence of the strontium-oxygen bond also suggests physical adsorption due to the large contribution of the dynamic component of the Debye Waller factor. Although second-shell data are consistent with either 3 manganese atoms at 4.12 ? or 6 strontium atoms at 3.88 ?, both the near-edge and fine structure data for the manganese K-edge indicate that the local coordination environment of the manganese ion remains intact as a function of time or strontium sorption. Furthermore, the local structure of amorphous manganese oxide is highly ordered. Copyright 2000 Academic Press.  相似文献   

10.
Thin titanium and titanium oxide films, both covered by ultra-thin gold layers, have been compared with titanium films after analysis, using a combination of SEM and AES. The Ti films were prepared under UHV conditions by evaporation on a glass substrate. The Ti oxide layers were prepared in situ by precisely controlled oxygen sorption at 298 K on Ti film. Both Ti and Ti oxide films were then covered in situ by a very thin Au layer. Analysis was performed in a separate system after long-term exposure of the films to air. SEM analysis revealed a much smaller size grain on the Au coated Ti films than on Ti films not coated with a Au layer. The thin gold layers covering the Ti surface prevent an extensive air interaction with Ti film. The analysis of the features of the Ti Auger spectra during the sputter profile measurements allow to characterise the chemical nature of Ti-oxide formed in Ti/Au interface region. Received: 7 September 1998 / Revised: 14 January 1999 / Accepted: 2 February 1999  相似文献   

11.
Complexation of lipids and surfactants with short DNA fragments at the air-water interface has been studied by neutron reflectivity. Complexation with zwitterionic lipids occurs in the presence of divalent cations, and ion specificity has been demonstrated (binding is less effective with Ba2+ than with Mg2+ or Ca2+). One and two DNA layers have been observed for dilute and more compact lipid monolayers, respectively. Two DNA layers have also been found with the soluble cationic surfactant dodecyltrimethylammonium bromide (DTAB), except close to the precipitation boundary. This result is opposite to that found in ellipsometry where very thick layers are found in this region. It is possible that the ellipsometry signal is due to highly hydrated bulk complexes adsorbing at the surface, not seen by neutrons because of unfavorable contrast conditions. Long DNA was found to be less keen to form surface complexes than short DNA fragments.  相似文献   

12.
Two unusual features of noble metal electrode surfaces, active states of the metal and their anodic oxidation products (hydrous oxides), are of increasing interest at the present time owing to the important role of such species in electrocatalysis. The extent to which the hydrous oxide reduction process overlaps with the hydrogen adsorption region was investigated for platinum in acid solution. At least three distinct hydrous oxide reduction peaks (or regions) were observed and in some cases one of these peaks commenced at ca. 0.0 V, i.e. it was almost totally within the hydrogen gas evolution region. Following repeated hydrous oxide growth and reduction, which disrupted and thus activated the metal surface, a sequence of four low-level premonolayer oxidation peaks (each of which has been noted earlier by other authors) appeared in the positive sweep. As discussed earlier for copper in base, the transitions giving rise to such peaks are assumed to be mediator generation reactions, which strongly influence electrocatalytic processes occurring on platinum at low potentials. Electronic Publication  相似文献   

13.
Two-dimensional gold nanostructures have been fabricated by electrochemical deposition of gold nanoparticles onto indium tin oxide (ITO) glass substrate modified with thin polypyrrole film. By controlling the electrodeposition conditions, gold nanoparticles with dendritic rod, sheet, flower-like (consisting of staggered nanosheets), and pinecone-like structures were generated. The flower-like gold nanoparticles showed high catalytic activity on electrochemical reduction of oxygen, and its activity was measured to be approximately 25 times that of gold pinecones and 10(4) times that of gold nanosheets in terms of gold weight. The pinecone-like nanoparticles can form a compact film with nano-/microscale binary structure like a lotus leaf surface. After modification with n-dodecanethiol, the surface showed superhydrophobic properties with a water contact angle of 153.4 degrees and a tilt angle of 4.4 degrees (5 microL droplet).  相似文献   

14.
阳极氧化法制备具有纳米多孔结构的阳极氧化铁膜因其潜在的应用价值而倍受关注。然而,在阳极氧化过程中多孔结构的形成机制至今尚不清楚。本文结合电流密度-电位响应(I-V曲线)及法拉第定律的推导,分析了形成纳米多孔阳极氧化铁膜的过程中阳极电流的组成。结果表明,离子电流(导致离子迁移形成氧化物)和电子电流(导致析出氧气)共同组成阳极电流,并且纳米多孔阳极氧化铁膜的形成与两种电流的占比相关。分段式氧化物之间的空腔以及在阳极氧化初期纳米孔道上覆盖的致密膜,表明氧气泡可能是从氧化膜内部析出。此时,阳离子和阴离子绕过作为模具的氧气泡实现传质,最终导致纳米多孔结构的形成。此外,在阳极氧化铁膜形貌演变过程中,氧气泡不断向外溢出会使表面氧化物被冲破,导致表面孔径不断增大。  相似文献   

15.
An atomic force microscope (AFM) is used to study the adhesion between a silica sphere and a mica plate in pure water and solutions of monovalent cations (LiCl, NaCl, KCl, and CsCl). It is found that the adhesive force depends not only on the electrolyte concentration but also on the hydration enthalpy of cations and the contact time of the particle on the surface. Possible mechanisms by which the observed phenomena can be explained consistently are discussed extensively. It is suggested that the adhesive force is closely related to the structure of the layer of cations and water molecules adsorbed on the surfaces: the strong adhesive force is obtained when highly hydrated cations (Li(+), Na(+)) are adsorbed to form a thick but weakly adsorbed layer, while the weak adhesive force is observed when poorly hydrated cations (Cs(+), K(+)) are adsorbed to form a thin but strongly adsorbed layer. Copyright 2000 Academic Press.  相似文献   

16.
Kew SJ  Hall EA 《The Analyst》2007,132(8):801-810
Electrochemical surface plasmon resonance (E-SPR) was used to investigate whether the chromic properties of a polydiacetylene (PDA) vesicle films, adsorbed onto an ultra-thin gold electrode, could be triggered by applied potential. This approach constitutes a preliminary model for a novel approach to the use of a triggered chromic transition, as an indicator of biorecognition headgroup binding in these materials. A PDA chromic blue-red transition was identified in E-SPR against the background Deltaepsilon(e) and Deltaepsilon(m). The latter resulted in a ca. 100 mDeg V(-1) shift in the SPR minimum, in the presence of PDA, with the PDA shielding changes in epsilon(e). Electrochemical charge transfer processes in the pre-oxide/oxide anodic region with adsorbed oxygen and hydroxide, involving a change in Au redox state (Au(0)/Au(+)) were visible in the SPR, due to a change in the gold layer thickness and gold oxide layer. However, the cathodic processes, not involving a change in the Au redox state or a increase/decrease in the surface layer dielectric, did not cause a change in the SPR. Based on this, dramatic changes in the optical properties of the adsorbed PDA film could be triggered at an applied cathodic potential, and were identified using SPR. These correlated with a pH-induced chromic transition. Both protonation and ion binding, linked with headgroup environment, were implicated in causing structural transitions in the adsorbed vesicle layer that may also be linked with their bulk optical properties.  相似文献   

17.
Influence of pH on the chemical and structural properties of the oxide films formed on 316L stainless steel, alloy 600 and alloy 690 in high temperature aqueous environments. The oxide films formed on 316L stainless steel, alloy 600 and alloy 690 at 320°C in high temperature aqueous environments of different pH have been examined by glow discharge optical spectroscopy, scanning electron microscopy, atomic force microscopy and capacitance measurements. The analytical study reveals that the films formed at pH 5 are mainly composed of chromium oxides. When the pH increases the chromium concentration decreases and those of the other two elements (Ni and Fe) tend to increase. The films formed at pH 5 on 316L stainless steel and alloy 600 are thick and powder-like. The film formed at the same pH on alloy 690 is thin and is composed of a compact protective inner layer and a less-compact outer layer formed by crystals of mixed iron-nickel-chromium oxides. The morphological appearance of the thick films and that of the thin films is very different. However, equivalent morphologies can be observed for the relatively thin duplex films formed at pH8 and pH9.5 on the 316L stainless steel and nickel-base alloys. The evolution of the chemical composition of the films is accompanied by important changes from the point of view of their semiconductivity.  相似文献   

18.
Hemoglobin (molecular weight 64.5 kDa, isoelectric point 7.4) in 0.1 M phosphate buffer solution at pH 5.5 readily adsorbs onto mesoporous TiO2 phytate films, which have been formed in a layer-by-layer deposition process from TiO2 nanoparticles (ca. 6–10 nm diameter) and phytic acid at tin-doped indium oxide (ITO) electrodes. Quartz crystal microbalance data, voltammetry, and SEM evidence are consistent with hemoglobin adsorption only into the outer TiO2 phytate surface layer. The size of the tetrametric hemoglobin protein (ca. 6 nm diameter) appears to be too big for a homogeneous film to form.The modified ITO electrode immersed in 0.1 M phosphate buffer solution at pH 5.5 allows reversible electron transfer for hemoglobin to be observed with a midpoint potential of 0.01 vs. SCE. Characteristic TiO2 phytate film thickness and pH effects are observed with both thicker films and lower proton activity causing ‘decoupling’ of the protein redox chemistry due to a reduced electrical conductivity of the TiO2 phytate film connecting hemoglobin with the electrode. This is the first example of a bi-layer nanofilm structure where the underlying TiO2 phytate film controls the electrochemical properties of the hemoglobin modified top-layer.  相似文献   

19.
Noble metal hydrous oxides are known to be recalcitrant systems, i.e. they either undergo reduction at high overpotential or fail to undergo this reaction, due to the intervention of high-energy, virtually isolated atom or nanocluster states of the element as primary reduction products. Hydrogen absorption by activated palladium in base results in enhanced levels of surface activation and eventually to the spontaneous generation of recalcitrant hydrous oxide species which deactivate the electrode surface. Hydrous oxide behaviour at palladium in base is significantly more complicated than in acid; the deposits in question are less readily formed in base, and the main component of a multilayer oxide film grown in acid (HO2) seems to alter to a more readily reducible form (HO1) on transferring the electrode to base. However, evidence was obtained serendipitously in the present work for the formation of a recalcitrant oxide deposit on palladium in base; the involvement of metastable metal and hydrous oxide states provides the basis of energy storage and anomalous heat emission behaviour which is a controversial topic in the case of this electrode system.  相似文献   

20.
The fine microstructure of the passive films on nanocrystalline (NC) and coarse crystalline (CC) 304 stainless steels (SSs) in 0.5 M H2SO4 were investigated by electrochemical impedance spectroscopy (EIS), X-ray photoelectron spectroscopy (XPS), and atomic force microscopy (AFM). The results indicate that the passive film on both CC and NC SSs exhibits a two-layer microstructure consisting of a compact inner layer and a porous outer layer. Some hydrated compounds (HC) were present in the porous outer layer of NC SS but not CC SS in 0.5 M H2SO4 solution. The pores in the outer layer of the NC SS were observed to be in the nanoscale by AFM. HC filling of the pores in the passive film on NC SS may occur due to capillary forces endowed by the nanosize pores. XPS analysis of the passive films on both CC and NC SSs, however, does not show such a composition difference which is attributed to dehydration occurring in the XPS vacuum chamber. Both the inner and outer layers of the NC SS were determined by EIS analysis to be more compact and protective than the corresponding films on CC SS as evidenced by the lower Q value, higher n, and much higher R value in the corresponding layer.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号