首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 359 毫秒
1.
Kaneko H  Kanagawa H  Kobayashi H  Ueno K 《Talanta》1967,14(12):1411-1415
The zone melting technique has been applied to 8-hydroxyquinoline containing trace amounts of various metal 8-hydroxyquinolates such as the nickel(II), cobalt(II), zinc(II) and copper(II) chelates. The metal chelate in each system was concentrated in the direction of zone travel. The highest concentrating effect was observed in the copper(II) chelate system. The concentration ratio, defined as the fraction of the metal chelate concentrated in the bottom 15% of the column, was determined after the 30th passage. A trace amount of copper ion extracted with a large excess of 8-hydroxyquinoline, was concentrated by means of the zone melting technique. The concentration ratio was 96%.  相似文献   

2.
Studies on the fractional sublimation of various metal β-diketone chelates have been extended to include the chelates of thenoyltrifluoroacetone (TTA). Many of the common metal chelates were found to be stable, to sublime readily, and to form well-defined zones in the vacuum fractional sublimator. Of the 17 chelates reported only those of manganese (II) and iron(II) were not volatile. The chelates of UO2(II), Zr(IV), Pb(II), and Cr(III) partially decomposed during sublimation and their recovery was incomplete. The recovery of the sublimed chelates of Ni(II), Mg(II), Al(III), Pd(II), Co(II), Cu(II). Fe(III), Tl(III), Zn(II) and Be(II) ranged from 87 to 100%, with most recoveries being quantitative. The sublimation recrystallization zone temperatures of the various chelates are compared to those of the metal acetylacetonates and the benzoyltrifluoroacetonates; in general, the metal chelates of TTA sublime more readily than those of benzoyltrifluoroacetone but are potentially less useful for fractional sublimation separations than the corresponding metal acetylacetonates. Even so, a quantitative separation of iron(III) from Ni(II), Al(III), Mn(II), and Fe(II) is proposed that depends upon the fractional sublimation of the TTA chelates.  相似文献   

3.
Water-insoluble 8-quinolinolato metal chelates were formed and were stably solubilized in the aqueous solution of a water-soluble polymer, poly (N-isopropylacrylamide)(PNIPAAm), at room temperature. When the solution was heated at 50 degrees C, PNIPAAm precipitated and then formed a gum-like aggregate (polymer phase) having a very small volume. Accompanying the polymer precipitation, hydrophobic 8-quinolinolato chelates with cobalt(II), iron(III), nickel(II), and copper(II) ions were efficiently incorporated into the polymer phase. At 0.5% (w/v) of PNIPAAm and 8.0 mM of 8-quinolinol, the recoveries in the incorporation of four metal chelates were quantitative. The fluorescence spectra of a probe suggests that the hydrated polymer in the aqueous solution provides hydrophobic portions which can incorporate hydrophobic metal chelates. The polymer phase was easily taken out from the solution and was dissolved with a small amount of acetonitrile. The resulting solution could be directly introduced into a graphite furnace of atomic absorption spectrometry. The signal intensities for the absorbance of cobalt after concentrating the chelate were 100-fold greater than those before the concentration.  相似文献   

4.
Yoshida I  Kobayashi H  Ueno K 《Talanta》1977,24(1):61-63
The zone-melting method was applied to purification of tetrakis(di-n-propionylmethanato)zirconium(IV) which contained copper(II), nickel(II), cobalt(II and III), iron(III) and hafnium(IV) in the forms of their chelates with the common ligand. All minor components having effective distribution coefficients < 1 in the zirconium(IV) chelate were concentrated toward the terminal end of the refining column. When an aqueous solution of zirconium(IV) containing zinC(II) and manganese(II) in addition to the metal contaminants above was treated with di-n-propionylmethane to precipitate the chelate complexes, only zinc, iron and hafnium were found in the precipitated zirconium chelate. The first two were ettectively removed by zone-melting. Though the separation of hafnium was poorer, the technique was efficient enough for practical purposes.  相似文献   

5.
Capillary GC and HPLC of metal chelates of pentamethylene dithiocarbamate were examined. Copper(II), nickel(II), cobalt(III), iron(III), manganese(II) and chromium(III) chelates formed in slightly acidic media (pH 5) were extracted in methyl isobutyl ketone or chloroform. Capillary GC elution and separation was carried out on methylsilicone DB-1 column (25 m x 0.2 mm I.D.) with film thickness 0.25 microm. Electron-capture detection was used. Elution was carried at initial column temperature 200 degrees C with an increment at a rate of 5 degrees C/min up to 250 degrees C and maximum temperature was maintained for 10 min. Symmetrical peaks with baseline separation were obtained with the metal chelates investigated with linear calibration range between 5 and 25 microg/ml for each metal ion and detection limits in the range of 0.5-6.0 microg/ml corresponding to 27-333 pg of metal ion reaching to the detector. HPLC separation was carried out from LiChrosorb ODS, 5 microm column and complexes eluted with methanol-water-1 mM sodium acetate (70:28:2, v/v) with a flow-rate of 1.2 ml/ml. UV detection was at 260 nm. The detection limits obtained were in the range 2-6 microg/ml. The methods were applied to the determination of metal ions in canal water and coal samples with RSD values within 4.15%. The results when compared with a standard flame atomic absorption spectrophotometric method and revealed no significant difference.  相似文献   

6.
Chelating aggregates consisting of Triton X100 host micelles and hydrophobic derivatives of PAN have been examined as suitable candidates for preconcentration and selective separation of transition metal ions through micellar-enhanced ultrafiltration. The effective accumulation in the surfactant-rich retentate of nickel(II), copper(II), cobalt(II), manganese(II) and zinc(II), present at trace levels in aqueous samples, has been achieved by operating at pH ca. 6 with a ligand having a binding constant to the host micelles higher than 2000 l./mol. The efficient separation of micelle-bound metal chelates from unreactive ions has been assessed, together with the feasibility of selective enrichment and purification of the investigated metal ions present in mixtures through a multistage process.  相似文献   

7.
Summary Mixed ligand complexes of copper(II), zinc(II), nickel(II) and cobalt(II) ions involving 1,10-phenanthroline (phen) as primary and 3,5-dinitrosalicylic acid (dnsa), 5-nitrosalicylic acid (nsa), 5-chlorosalicylic acid (csa) and 3,5-dibromosalicylic acid (dbsa) as secondary ligands in solution have been investigated potentiometrically [25°, µ = 0.1 M [NaClO4], medium 50% v: v aqueous ethanol]. The stability order of mixed ligand complexes with respect to the metal ions obeys the natural order: cobalt(II) < nickel(II) < copper(II) > zinc(II). The stabilities of the heterometal chelates have been compared with the corresponding homometal chelates of the secondary ligands and have been interpreted in terms of metal-ligand effects and coulombic interactions between various ligand anion species present.  相似文献   

8.
Summary Capillary GC of metal chelates of diethyl dithiocarbamate (DDTC) was examined on a methylsilicone DB-1 column, (25 meter, 0.2 mm. i.d) with a film thickness of 0.25 μm. Elution was carried out at the initial column temperature of 180°C and programmed at 5°C min−1 to 260°C. Detection was by FID or ECD. Symmetrical peaks with base line separation were obtained with the metal chelates of copper(II), nickel(II), cobalt(III), manganese(II) and chromium(III). The ECD gave better sensitivity than the FID with a linear calibration range of 5–50 μg mL−1 and detection limits 2.0–6.0 μg mL−1, corresponding to 111–333 pg of metal ion reaching the detector. The method was applied to the determination of metal ions in water and pharmaceutical preparations with a coefficient of variation (CV) within 4.0%. When compared with a standard flame AAS method the results revealed no significant difference.  相似文献   

9.
Electrically neutral acetylacetonato complexes of chromium(III), cobalt(III), rhodium(III), and platinum(II) (or palladium(II)) have been separated successfully by capillary zone electrophoresis in a micellar solution of sodium dodecyl sulfate (SDS). The distribution coefficient of each metal complex between the SDS micelle and the aqueous solution surrounding the micelle was calculated from the capacity factor. A linear log-log relationship was found between the distribution coefficient and the partition coefficient of the complex between dodecane and water. The linear relationship was effectively used for prediction of both the distribution coefficients and the migration times of other metal complexes, such as palladium(II) acetylacetonate and chromium(III) 3-methyl acetylacetonate.  相似文献   

10.
The aim of this work was to devise a one‐step purification procedure for monoclonal antibodies (MAbs) of IgG class by immobilized metal affinity chromatography (IMAC). Therefore, several stationary phases were prepared containing immobilized metal chelates in order to study the chromatographic behaviour of MAbs against wild‐type amidase from Pseudomonas aeruginosa. Such MAbs adsorbed to Cu(II), Ni(II), Zn(II) and Co(II)–IDA agarose columns. The increase in ligand concentration and the use of longer spacer arms and higher pH values resulted in higher adsorption of MAbs into immobilized metal chelates. The dynamic binding capacity and the maximum binding capacity were 1.33 ± 0.015 and 3.214 ± 0.021 mg IgG/mL of sedimented commercial matrix, respectively. A KD of 4.53 × 10−7 m was obtained from batch isotherm measurements. The combination of tailor‐made stationary phases of IMAC and the correct selection of adsorption conditions permitted a one‐step purification procedure to be devised for MAbs of IgG class. Culture supernatants containing MAbs were purified by IMAC on commercial‐Zn(II) and EPI‐30–IDA–Zn(II) Sepharose 6B columns and by affinity chromatography on Protein A‐Sepharose CL‐4B. This MAb preparation revealed on SDS–PAGE two protein bands with Mr of 50 and 22 kDa corresponding to the heavy and light chains, respectively. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

11.
Three new derivatives of dithizone are reported, with their electronic and i.r. spectra, acidity constants and partition coefficients between 0.5 M sodium perchlorate and chloroform or carbon tetrachloride. The extraction equilibria with Cd, Co(II), Hg(II), Ni, Pb, Tl(I), Zn and Bi and the spectrophotometric characteristics of the extractable metal chelates are described. Complete extraction of these complexes requires higher pH than that needed with dithizone itself. The 4,4′-dichloroisomer is more efficient than the 3,3′ and 5,5′-isomers, or dithizone itself, for the separation of cadmium from zinc or cobalt from nickel.  相似文献   

12.
A solid phase extraction method is established for preconcentration of nickel, lead, cadmium, copper and cobalt using pipette tip solid phase extraction. The presented process was dependent on chelation of analytes with 1,3,4-thiadiazole-2,5-dithiol, then allowing the solution to flow through an activated carbon cloth packed pipette tip. The adsorbed metal chelates on the surface of activated carbon cloth were eluted by 5 mL of 3 M HNO3. The concentrations of nickel, lead, cadmium, copper and cobalt were detected using a flame atomic absorption spectrometer (FAAS). The pipette tip solid phase extraction exhibit a preconcentration factor of 120. The limit of detection values were 2.7, 1.7, 1.3, 2.0 and 2.9 µg L?1 for Ni(II), Pb(II), Cd(II), Cu(II) and Co(II), respectively. Validation of the method was checked by the analysis of TMDA-53.3 and TMDA-64.2 certified reference materials. The method was successfully applied for water and fertiliser samples.  相似文献   

13.
The preparation and thermal analysis of metal chelates of benzohydroxarnic acid (BHA) with Al(III), Cd(II), Co(II), Cu(II) (two compounds), Fe(III), La(III), Pb(II), Mn(II), Ni(II), U(VI) and Zn(II) is discussed. The Al(III), La(III), Pb(II) and Mn(II) chelates are new compounds. DTA and TGA curves of the chelates and of BHA are presented, and the heats of decomposition of the chelates are estimated.  相似文献   

14.
Y. Zhao 《Chromatographia》2000,51(3-4):231-234
Summary A new chelating reagent 2-thiophenaldehyde-4-phenyl-3-thiosemicarbazone (TAPT) has been examined for high performance liquid chromatographic (HPLC) separations of cobalt (II), copper(II) and iron (II) or cobalt (II), nickel (II), iron (II), copper (II) and mercury (II) as metal chelates on a C18, 5μm column (250×4 mm i.d.) The chelates were eluted isocratically with methanol: acetonitrile: water containing sodium acetate and tetrabutylammonium bromide (TBA), and detected at 254 nm. A solvent extraction procedure was developed for simultaneous determination of the metals with detection limits within 0.02–2.5 μ g.mL−1. The method was applied to the determination of copper, cobalt and iron in natural waters.  相似文献   

15.
Positron lifetime diagnostics was used to study manganese(II), cobalt(II), nickel(II), copper(II), and zinc(II) acetylacetonates, γ-chloro and γ-bromo chelate complexes of cobalt and nickel, and similar halo and nitro chelate complexes of copper. The dependences of the annihilation lifetime τ2 on the metal nature and the stability constant of the metal chelate ring were established. The annihilation lifetime and intensity were found to depend not only on the electronic effect of the γ-substituent in the chelate ring but also on the structure of the complex. A comparison of the dependences of the frequencies of the C-O and M-O stretching vibrations on τ2 revealed that a positron interacts simultaneously with the γ-carbon atoms and the O atoms of the chelate ring, whose accessibilities are determined by the structures of bis(chelates). The plots of the ionization potentials of the n-orbitals of the bis(chelates) vs. τ2 were similar to the plots of the quenching rate constant of the benzophenone triplet vs. τ2 in the presence of the bis(chelates).  相似文献   

16.
Summary Complexes of furan and thiophene azo-oximes with iron(II), cobalt(III), nickel(II) and copper(II) have been prepared and characterised. Iron(II), cobalt(III) and copper(II) complexes are diamagnetic in the solid state. The diamagnetism of the copper(II) chelates is suggestive of antiferromagnetic interaction between two copper centres.1H n.m.r. spectral data suggest atrans-octahedral geometry for the tris-chelates of cobalt(III). Nickel(II) complexes are paramagnetic, in contrast to the diamagnetism of the analogous complexes of arylazooximes. The electronic spectra are suggestive of octahedral geometry for the iron(II), cobalt(III) and nickel(II) complexes, andD 4h -symmetry for copper(II). Infrared data indicate N-bonding of the oximino-group to the metal ions.  相似文献   

17.
The synthesis and characterization of Mn(II), Fe(III), Co(II), Ni(II), Cu(II), Zn(II), Cd(II), Pd(II) and UO2(II) chelates of 1-(2-thiazolylazo)-2-naphthalenol (TAN) were reported. The dissociation constants of the ligand and the stability constants of the metal complexes were calculated pH-metrically at 25 degrees C and 0.1 M ionic strength. The solid complexes were characterized by elemental and thermal analyses, molar conductance, IR, magnetic and diffuse reflectance spectra. The complexes were found to have the formulae [M(L)2] for M = Mn(II), Co(II), Ni(II), Zn(II) and Cd(II); [M(L)X].nH2O for M = Cu(II) (X = AcO, n = 3), Pd(II) (X = Cl, n = 0) and UO2(II) (X = NO3, n = 0), and [Fe(L)Cl2(H2O)].2H2O. The molar conductance data reveal that the chelates are non-electrolytes. IR spectra show that the ligand is coordinated to the metal ions in a terdentate manner with ONN donor sites of the naphthyl OH, azo N and thiazole N. An octahedral structure is proposed for Mn(II), Fe(III), Co(II), Ni(II), Zn(II), Cd(II) and UO2(II) complexes and a square planar structure for Cu(II) and Pd(II) complexes. The thermal behaviour of these chelates shows that water molecules (coordinated and hydrated) and anions are removed in two successive steps followed immediately by decomposition of the ligand molecule in the subsequent steps. The relative thermal stability of the chelates is evaluated. The final decomposition products are found to be the corresponding metal oxides. The thermodynamic activation parameters, such as E*, delta H*, delta S* and delta G* are calculated from the TG curves.  相似文献   

18.
Summary Isonitrosopropiophenonates of cobalt(III), cobalt(II), nickel(II) and palladium(II) have been synthesised and characterised. Isonitrosopropiophenonatonickel(II) exists as green and brown varieties, the green forming mono- as well as bispyridine adducts. The brown variety is obtained after removal of base from the adducts. I.r. data of the metal chelates suggest atrans-asymmetric structure involving N and O bonding for one form and atrans-symmetric structure involving either N or O bonding of the oximino-group for the other. The former is observed exclusively with isonitrosopropiophenonates of nickel(II) while the latter is common among the other metal chelates. The low magnetic moment of the mono-adduct is ascribed to super-exchange interaction between two metal ions through oxo-bridges in the dimer. Acis-octahedral structure has been assigned to the tris(isonitrosopropiophenonato) cobalt(III) on the basis of1H n.m.r. data. Isonitrosopropiophenone forms mixed-ligand complexes of cobalt(III) with tetradentate Schiff bases such as SALEN,N,N-ethylenebis(salicylaldimine), and SALPN,N,N-1,3-propylenebis-(salicylaldimine), where the isonitrose group bonds through the nitrogen atom. These complexes have a N,N,N,O,O,O ligand environment. The imino-nickel(II) and -palladium(II) complexes are assigned atrans-symmetric square planar structure. Characterisation of the complexes was based upon elemental analyses, conductivity and magnetic moment, and i.r.,1H n.m.r., and electronic spectra.  相似文献   

19.
Chelates of β-dicarbonyl compounds and their derivatives. XXIV. Stability constants of metal chelates with differently substituted acylpivaloylmethanes Stoichiometric stability constants of copper(II), beryllium(II), nickel(II), cobalt(II) and zinc(II) chelates of 25 differently substituted acylpivaloylmethanes are determined in dioxane-water mixture and relations for calculating thermodynamic constants are given. The influence of aromatic and aliphatic substituents of the β-diketones on complex stability is discussed.  相似文献   

20.
Although directly relevant to metal mediated biological nitrification as well as the coordination chemistry of peroxide, the metal complexes of hydroxylamines and their functionalized variants remain largely unexplored. The chelating hydroxylamine ligand N,N-bis(2-{pyrid-2-ylethyl})hydroxylamine can be readily generated via a solvent free reaction in high purity; however, the ligand is prone to decomposition which can hamper metal reaction. N,N-bis(2-{pyrid-2-ylethyl})hydroxylamine forms stable complexes with chromium(III), manganese(II), nickel(II), and cadmium(II) ions, coordinating in a side-on mode in the case of chromium and via the nitrogen in the case of the latter three metal ions. The hydroxylamine ligand can also be reduced to form N,N-bis(2-{pyrid-2-ylethyl})amine upon exposure to a stoichiometric amount of the metal salts cobalt(II) nitrate, vanadium(III) chloride, and iron(II) chloride. In the reaction with cobalt nitrate, the reduced ligand then chelates to the metal to form [N,N-bis(2-{pyrid-2-ylethyl})amine]dinitrocobalt(II). Upon reaction with vanadium(III) chloride and iron(III) chloride, the reduced ligand is isolated as the protonated free base, resulting from a metal-mediated decomposition reaction.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号