首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 156 毫秒
1.
Results of our femtosecond-picosecond laser photolysis studies on photoinduced electron transfer phenomena in solutions including exciplex dynamics and its solvent dependences, energy gap dependences of photoinduced charge separation and charge recombination of various geminate ion pairs, mechanisms of chemical reactions via exciplexes and ion pairs, dynamics of photoinduced election transfer in hydrogen bonding complexes, dynamics and mechanisms of photoinduced electron transfer in fixed distance donor acceptor dyads and photosynthetic reaction center models, and mechanisms of electron ejection from solute fluorescent state in polar solutions are summarized and discussed.  相似文献   

2.
3.
Photochromic 1,2‐dithienylethene (DTE) derivatives with a high thermal stability and fatigue resistance are appealing for optical switching of fluorescence. Here, we introduce a donor–photochromic bridge–acceptor tetraphenylethene‐dithienylethene‐perylenemonoimide (TPE‐DTE‐PMI) triad, in which TPE acts as the electron donor, PMI as the electron acceptor, and DTE as the photochromic bridge. In this system, the localized and intramolecular charge transfer emission of TPE‐DTE‐PMI with various Stokes shifts have been observed due to the photoinduced intramolecular charge transfer in different solvents. Upon UV irradiation, the fluorescence quenching resulting from photochromic fluorescence resonance energy transfer in TPE‐DTE‐PMI has been demonstrated in solution and in solid films. The fluorescence on/off switching ratio in polymethylacrylate film exceeds 100, a value much higher than in polymethylmethacrylate film, thus indicating that the fluorescence switching is dependent on matrices.  相似文献   

4.
An electron donor–acceptor dyad (quaterthiophene–anthraquinone) mediates ultrafast intramolecular photoinduced charge separation and consequent charge recombination when in polar or moderately polar solvents. Alternatively, non-polar media completely impedes the initial photoinduced electron transfer by causing enough destabilization of the charge-transfer state and shifting its energy above the energy of the lowest locally excited singlet state. Furthermore, femtosecond transient-absorption spectroscopy reveals that for the solvents mediating the initial photoinduced electron-transfer process, the charge recombination rates were slower than the rates of charge separation. This behavior of donor–acceptor systems is essential for solar-energy-conversion applications. For the donor–acceptor dyad described in this study, the electron-transfer driving force and reorganization energy place the charge-recombination processes in the Marcus inverted region.  相似文献   

5.
1-Thiouredopyrene-3,6,8-trisulfonate (TUPS) has recently been used as a photoinduced covalent redox label capable of reducing various cofactors of proteins. A new reaction of this dye, whereby its excited triplet state oxidizes suitable electron donors, is now reported. The characteristic difference spectrum of the reduced radical of TUPS is determined. We also observe the self-exchange electron transfer between two TUPS molecules in their triplet excited states and determine the reaction scheme and the rate constants of the various pathways in the process of triplet depletion. The ability of photoexcited TUPS to withdraw an electron from reduced cytochrome-c is also observed. It is thus demonstrated that TUPS is an appropriate photoinduced covalent redox label for initiating both the oxidative and reductive phases of electron transfer processes in biological macromolecules.  相似文献   

6.
The objective of this paper is to discuss: (i) the general approaches to the initiation of cationic polymerization by photinduced electron transfer reactions (ii) the use of photoinduced electron transfer reactions for block copolymer synthesis. For the first, it is concluded that three general methods are currently available which involve reduction of onium salts by (a) photogenerated radicals, (b) photoexcited sensitizers or (c) electron donor compounds in charge transfer complexes. According to this view, a variety of initiating systems are discussed. For the second, recent developments on the application of photoinduced electron transfer reactions to the synthesis of block copolymer of monomers polymerizable with different mechanisms are presented.  相似文献   

7.
Bistridentate metal complexes as photosensitizers are ideal building blocks in the construction of rod-like isomer-free assemblies for intramolecular photoinduced charge separation. Approaches to obtain long-lived luminescent metal-to-ligand charge transfer excited states in bistridentate RuII polypyridine complexes via the manipulation of metal-centered state energies are discussed. Following an introduction to general strategies to prolong the excited state lifetimes, more recent work is explored in detail where tridentate ligands with expanded 2,2′:6′,2″-terpyridine cores are utilized. The synthesis of these tridentate ligands and their corresponding RuII complexes is covered. Bistridentate RuII complexes with microsecond metal-to-ligand charge transfer excited state lifetimes are described, and are used in electron donor–photosensitizer–electron acceptor assemblies for efficient vectorial photoinduced charge separation.  相似文献   

8.
The first examples of rodlike donor–photosensitizer–acceptor arrays based on bis‐2,6‐di(quinolin‐8‐yl)pyridine RuII complexes 1 a and 3 a for photoinduced electron transfer have been synthesized and investigated. The complexes are synthesized in a convergent manner and are isolated as linear, single isomers. Time‐resolved absorption spectroscopy reveals long‐lived, photoinduced charge‐separated states (τCSS ( 1 a )=140 ns, τCSS ( 3 a )=200 ns) formed by stepwise electron transfer. The overall yields of charge separation (≥50 % for complex 1 a and ≥95 % for complex 3 a ) are unprecedented for bis‐tridentate RuII polypyridyl complexes. This is attributed to the long‐lived excited state of the [Ru(dqp)2]2+ complex combined with fast electron transfer from the donor moiety following the initial charge separation. The rodlike arrangement of donor and acceptor gives controlled, vectorial electron transfer, free from the complications of stereoisomeric diversity. Thus, such arrays provide an excellent system for the study of photoinduced electron transfer and, ultimately, the harvesting of solar energy.  相似文献   

9.
Photoinduced electron transfer process is a crucial step in photooxidation to obtain synthetic chemicals. However, the driving forces of electron transfer as priority in all have been rarely studied in stepwise detail. Herein, we report a series of BODIPY derivatives with an emphasis on the intramolecular charge transfer, enhancing the key step of photoinduced electron transfer process and photooxidation performances. A series of novel BODIPY photosensitizers ( B‐1 – B‐5 ) were prepared, wherein diethylamine amino of B‐3 as charge injection group was conjugated to the 2,6‐diiodo‐styryl‐BODIPY, and the electron transfer impetus was enhanced 1.6 times due to its more negative redox potentials. These results were also confirmed by the DFT/TDDFT calculation. Without pure oxygen, B‐3 still can exhibit an exceptional performance in photoxidative aromatization of 1,4‐DHP under mild condition. After irradiation for 28 min, the conversion rate came to 98.2%.  相似文献   

10.
The synthesis, electrochemical, and photophysical properties of five multicomponent systems featuring a ZnII porphyrin (ZnP) linked to one or two anilino donor‐substituted pentacyano‐ (PCBD) or tetracyanobuta‐1,3‐dienes (TCBD), with and without an interchromophoric bridging spacer (S), are reported: ZnP‐S‐PCBD ( 1 ), ZnP‐S‐TCBD ( 2 ), ZnP‐TCBD ( 3 ), ZnP‐(S‐PCBD)2 ( 4 ), and ZnP‐(S‐TCBD)2 ( 5 ). By means of steady‐state and time‐resolved absorption and luminescence spectroscopy (RT and 77 K), photoinduced intramolecular energy and electron transfer processes are evidenced, upon excitation of the porphyrin unit. In systems equipped with the strongest acceptor PCBD and the spacer ( 1 , 4 ), no evidence of electron transfer is found in toluene, suggesting ZnP→PCBD energy transfer, followed by ultrafast (<10 ps) intrinsic deactivation of the PCBD moiety. In the analogous systems with the weaker acceptor TCBD ( 2 , 5 ), photoinduced electron transfer occurs in benzonitrile, generating a charge‐separated (CS) state lasting 2.3 μs. Such a long lifetime, in light of the high Gibbs free energy for charge recombination (ΔGCR=?1.39 eV), suggests a back‐electron transfer process occurring in the so‐called Marcus inverted region. Notably, in system 3 lacking the interchromophoric spacer, photoinduced charge separation followed by charge recombination occur within 20 ps. This is a consequence of the close vicinity of the donor–acceptor partners and of a virtually activationless electron transfer process. These results indicate that the strongly electron‐accepting cyanobuta‐1,3‐dienes might become promising alternatives to quinone‐, perylenediimide‐, and fullerene‐derived acceptors in multicomponent modules featuring photoinduced electron transfer.  相似文献   

11.
We report on the capability of polydopamine (PDA), a mimic of mussel adhesion proteins, as an electron gate as well as a versatile adhesive for mimicking natural photosynthesis. This work demonstrates that PDA accelerates the rate of photoinduced electron transfer from light‐harvesting molecules through two‐electron and two‐proton redox‐coupling mechanism. The introduction of PDA as a charge separator significantly increased the efficiency of photochemical water oxidation. Furthermore, simple incorporation of PDA ad‐layer on the surface of conducting materials, such as carbon nanotubes, facilitated fast charge separation and oxygen evolution through the synergistic effect of PDA‐mediated proton‐coupled electron transfer and the high conductivity of the substrate. Our work shows that PDA is an excellent electron acceptor as well as a versatile adhesive; thus, PDA constitutes a new electron gate for harvesting photoinduced electrons and designing artificial photosynthetic systems.  相似文献   

12.
It is shown that aromatic excimers, produced by photoexcitation of aromatic clusters and diarylalkanes, are excellent electron donors in photoinduced charge transfer.  相似文献   

13.
Long-lived photoinduced charge separation involving one-step electron transfer is achieved in diphenylaminopolyene based C60-donor dyads with a short, flexible linkage.  相似文献   

14.
《化学:亚洲杂志》2018,13(16):2117-2125
Integration of functional molecular parts into nanoporous materials in a state that allows intermolecular charge or energy transfer is one of the key approaches to the development of photofunctional and electroactive materials. Herein, we report charge separation in a functionalized framework of a periodic mesoporous organosilica (PMO) self‐assembled by hydrogen bonds. Electroactive π‐conjugated organic species with different electron‐donating and electron‐accepting properties were selectively fixed onto the external surface of a nanoparticulate PMO, within the pore wall, and onto the surface of the internal mesopore. UV irradiation of the modified PMO resulted in photoinduced electron transfer and charge separation from the external surface to the pore wall and from the pore wall to the surface of the internal mesopores. These results suggest the high potential of multifunctionalized PMOs in the construction of photocatalytic reaction fields.  相似文献   

15.
A supramolecular triad consisting of self-assembled imidazolyl-zinc-porphyrin dimer, ferrocene, and fullerene was successfully constructed, resulting in long-lived charge separated species after efficient photoinduced electron transfer and charge shift reactions.  相似文献   

16.
The influence of spatial charge redistribution modeled by a change in the dipole moment of the reagent that experiences excitation on the dynamics of ultrafast photoinduced electron transfer was studied. A two-center model based on the geometry of real molecules was suggested. The model described photoexcitation and subsequent electron transfer in a donor-acceptor pair. The rate of electron transfer was shown to depend substantially on the dipole moment of the donor at the photoexcitation stage and the direction of subsequent electron transfer. These parameters also determined the most important characteristic of ultrafast photoinduced electron transfer, the angle ? between the reaction coordinates corresponding to these reaction stages. The regions of model parameters corresponding to the strongest influence of the carrier frequency of the exciting pulse on the rate of electron transfer were established.  相似文献   

17.
The mechanism and dynamics of photoinduced charge separation and charge recombination have been investigated in synthetic DNA hairpins possessing donor and acceptor stilbenes separated by one to seven A:T base pairs. The application of femtosecond broadband pump-probe spectroscopy, nanosecond transient absorption spectroscopy, and picosecond fluorescence decay measurements permits detailed analysis of the formation and decay of the stilbene acceptor singlet state and of the charge-separated intermediates. When the donor and acceptor are separated by a single A:T base pair, charge separation occurs via a single-step superexchange mechanism. However, when the donor and acceptor are separated by two or more A:T base pairs, charge separation occurs via a multistep process consisting of hole injection, hole transport, and hole trapping. In such cases, hole arrival at the electron donor is slower than hole injection into the bridging A-tract. Rate constants for charge separation (hole arrival) and charge recombination are dependent upon the donor-acceptor distance; however, the rate constant for hole injection is independent of the donor-acceptor distance. The observation of crossover from a superexchange to a hopping mechanism provides a "missing link" in the analysis of DNA electron transfer and requires reevaluation of the existing literature for photoinduced electron transfer in DNA.  相似文献   

18.
A series of linearly arranged donor-spacer-acceptor (D-S-A) systems 1-3, has been prepared and characterized. These dyads combine an Os(II)bis(terpyridine) unit as the photoactivable electron donor (D), a biphenylene (2) or phenylene-xylylene (3) fragment as the spacer (S), and a N-aryl-2,6-diphenylpyridinium electrophore (with aryl = 4-pyridyl or 4-pyridylium in 1 or 2/3, respectively) as the acceptor (A). Their absorption spectra, redox behavior, and luminescence properties (both at 77 K in rigid matrix and at 298 K in fluid solution) have been studied. The electronic structure and spectroscopic properties of a representative compound of the series (i.e., 2) have also been investigated at the theoretical level, performing Density Functional Theory (DFT)-based calculations. Time-dependent transient absorption spectra of 1-3 have also been recorded at room temperature. The results indicate that efficient photoinduced oxidative electron transfer takes place in the D-S-A systems at room temperature in fluid solution, for which rate constants (in the range 4 × 10(8)-2 × 10(10) s(-1)) depend on the driving force of the process and the spacer nature. In all the D-S-A systems, charge recombination is faster than photoinduced charge separation, in spite of the relatively large energy of the D(+)-S-A(-) charge-separated states (between 1.47 and 1.78 eV for the various species), which would suggest that the charge recombination occurs in the Marcus inverted region. Considerations based on superexchange mechanism suggest that the reason for the fast charge recombination is the presence of a virtual D-S(+)-A(-) state at low energy--because of the involvement of the easily oxidizable biphenylene spacer--which is beneficial for charge recombination via superexchange but unsuitable for photoinduced charge separation. To further support the above statement, we prepared a fourth D-S-A species, 4, analogous to 2 but with a (hardly oxidizable) single phenylene fragment serving as the spacer. For such a species, charge recombination (about 3 × 10(10) s(-1)) is slower than photoinduced charge separation (about 1 × 10(11) s(-1)), thereby confirming our suggestions.  相似文献   

19.
Fullerenes have been used successfully in the covalent assembly of supramolecular systems that mimic some of the electron transfer steps of photosynthetic reaction centers. In these constructs C60 is most often used as the primary electron acceptor; it is linked to cyclic tetrapyrroles or other chromophores which act as primary electron donors in photoinduced electron transfer processes. In artificial photosynthetic systems, fullerenes exhibit several differences from the superficially more biomimetic quinone electron acceptors. The lifetime of the initial charge-separated state in fullerene-based molecules is, in general, considerably longer than in comparable systems containing quinones. Moreover, photoinduced electron transfer processes take place in non-polar solvents and at low temperature in frozen glasses in a number of fullerene-based dyads and triads. These features are unusual in photosynthetic model systems that employ electron acceptors such as quinones, and are more reminiscent of electron transfer in natural reaction centers. This behavior can be attributed to a reduced sensitivity of the fullerene radical anion to solvent charge stabilization effects and small internal and solvent reorganization energies for electron transfer in the fullerene systems, relative to quinone-based systems.  相似文献   

20.
We have prepared a variety of porphyrin-fullerene linked systems to mimic photoinduced energy and electron transfer (ET) processes in photosynthesis. Photodynamical studies on porphyrin and analogs-fullerene linked systems have revealed the acceleration of photoinduced electron transfer and charge-shift and the deceleration of charge recombination, which is reasonably explained by the small reorganization energies of electron transfer in fullerenes. In this context, we have proposed two strategies, photoinduced single-step and multi-step electron transfers, for prolonging the lifetime of a charge-separated state in donor-acceptor linked systems. The single-step ET strategy allowed a zinc chlorin-fullerene linked dyad to extend the lifetime up to 120 seconds in frozen PhCN at 123 K, which is the longest value of charge separation ever reported for donor-acceptor linked systems. Unfortunately, however, the quantum yield of formation of the charge-separated state was as low as 12%, probably due to the decay of the precursor exciplex state to the ground state rather than to the favorable complete charge-separated state. In contrast, the multi-step ET strategy has been successfully applied to porphyrin-fullerene linked triads, tetrads, and a pentad. In particular, a ferrocene-porphyrin trimer-fullerene pentad revealed formation of a long-lived charge-separated state (0.53 s in frozen DMF at 163 K) with an extremely high quantum yield (83%), which is comparable to natural bacterial reaction centers. These results not only provide valuable information for a better understanding of photoinduced energy and electron transfer processes in photosynthesis, but also open the door for the development of photoinitiated molecular devices and machines.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号