首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
DNA is a useful material for nanoscale construction. Due to highly specific Watson-Crick base pairing, the DNA sequences can be designed to form small tiles or origami. Adjacent helices in such nanostructures are connected via Holliday junction-like crossovers. DNA tiles can have sticky ends which can then be programmed to form large one-dimensional and two-dimensional periodic lattices. Recently, a three-dimensional DNA lattice has also been constructed. Here we report the design and construction of a novel DNA cross tile, called the double-decker tile. Its arms are symmetric and have four double helices each. Using its sticky ends, large two-dimensional square lattices have been constructed which are on the order of tens of micrometers. Furthermore, it is proposed that the sticky ends of the double-decker tile can be programmed to form a three-dimensional periodic lattice with large cavities that could be used as a scaffold for precise positioning of molecules in space.  相似文献   

2.
BACKGROUND: Multiple-stranded DNA assemblies, encoded by sequence, have been constructed in an effort to self-assemble nanodevices of defined molecular architecture. Double-helical DNA has been probed also as a molecular medium for charge transport. Conductivity studies suggest that DNA displays semiconductor properties, whereas biochemical studies have shown that oxidative damage to B-DNA at the 5'-G of a 5'-GG-3' doublet can occur by charge transport through DNA up to 20 nm from a photo-excited metallointercalator. The possible application of DNA assemblies, in particular double crossover (DX) molecules, in electrical nanodevices prompted the design of a DNA DX assembly with oxidatively sensitive guanine moieties and a tethered rhodium photo-oxidant strategically placed to probe charge transport. RESULTS: DX assemblies support long-range charge transport selectively down the base stack bearing the intercalated photo-oxidant. Despite tight packing, no electron transfer (ET) crossover to the adjacent base stack is observed. Moreover, the base stack of a DX assembly is well-coupled and less susceptible than duplex DNA to stacking perturbations. Introducing a double mismatch along the path for charge transport entirely disrupts long-range ET in duplex DNA, but only marginally decreases it in the analogous stack within DX molecules. CONCLUSIONS: The path for charge transport in a DX DNA assembly is determined directly by base stacking. As a result, the two closely packed stacks within this assembly are electronically insulated from one another. Therefore, DX DNA assemblies may serve as robust, insulated conduits for charge transport in nanoscale devices.  相似文献   

3.
Two‐dimensional DNA lattices have been assembled from DNA double‐crossover (DX) motifs on DNA‐encoded surfaces in a site‐specific manner. The lattices contained two types of single‐stranded protruding arms pointing into opposite directions of the plane. One type of these protruding arms served to anchor the DNA lattice on the solid support through specific hybridization with surface‐bound, complementary capture oligomers. The other type of arms allowed for further attachment of DNA‐tethered probe molecules on the opposite side of the lattices exposed to the solution. Site‐specific lattice assembly and attachment of fluorophore‐labeled oligonucleotides and DNA–protein conjugates was demonstrated using DNA microarrays on flat, transparent mica substrates. Owing to their programmable orientation and addressability over a broad dynamic range from the nanometer to the millimeter length scale, such supramolecular architecture might be used for presenting biomolecules on surfaces, for instance, in biosensor applications.  相似文献   

4.
Two‐dimensional DNA lattices have been assembled from DNA double‐crossover (DX) motifs on DNA‐encoded surfaces in a site‐specific manner. The lattices contained two types of single‐stranded protruding arms pointing into opposite directions of the plane. One type of these protruding arms served to anchor the DNA lattice on the solid support through specific hybridization with surface‐bound, complementary capture oligomers. The other type of arms allowed for further attachment of DNA‐tethered probe molecules on the opposite side of the lattices exposed to the solution. Site‐specific lattice assembly and attachment of fluorophore‐labeled oligonucleotides and DNA–protein conjugates was demonstrated using DNA microarrays on flat, transparent mica substrates. Owing to their programmable orientation and addressability over a broad dynamic range from the nanometer to the millimeter length scale, such supramolecular architecture might be used for presenting biomolecules on surfaces, for instance, in biosensor applications.  相似文献   

5.
We extend the generality of nucleic acid-based structural nanotechnology by incorporating non-natural nucleic acids into a DNA double crossover (DX) molecule; visualizing two-dimensional arrays of these DX molecules by Atomic Force Microscopy (AFM) enables us to measure the helical repeat of any heteroduplex sequence capable of forming the outer arms of a DX.  相似文献   

6.
We measured the helical repeats of a non-natural nucleic acid, locked nucleic acid (LNA), by incorporating LNA strands into the outer arms of a DNA double crossover (DX) molecule; atomic force microscopy (AFM) imaging of the two-dimensional (2D) arrays self-assembled from these DX molecules allows us to derive the helical repeat of the LNA/DNA hetero-duplex to be 13.2 +/- 0.9 base pairs per turn.  相似文献   

7.
Specific cohesion of DNA molecules is key to the success of work in biotechnology, DNA nanotechnology and DNA-based computation. The most common form of intermolecular cohesion between double helices is by sticky ends, but sticky ends generated by naturally occurring restriction enzymes may often be too short to bind large constructs together. An alternative form of binding is available through the paranemic crossover (PX) motif. Each of the two components of a PX motif can be a DNA dumbbell or other topologically closed species. Alternate half-turns of the dumbbell are paired intramolecularly. The intervening half-turns are paired with those of the opposite component. We demonstrate the efficacy of PX cohesion by showing that it can result in the 1:1 binding of two triangle motifs, each containing nearly 500 nucleotides. The cohesion goes to completion, demonstrating an alternative to binding nucleic acid molecules through sticky ends.  相似文献   

8.
This paper describes the design and characterization of a new family of rectangular-shaped DNA nanostructures (DNA tiles) containing 4, 8, and 12 helices. The self-assembled morphologies of the three tiles were also investigated. The motivation for designing this set of DNA nanostructures originated from the desire to produce DNA lattices containing periodic cavities of programmable dimensions and to investigate the mechanism of DNA tube formation. Nine assembly scenarios have been investigated through the combination of the three different tiles and three sticky end association strategies. Imaging by atomic force microscopy (AFM) revealed self-assembled structures with varied cavity sizes, lattice morphologies, and orientations. Six samples show only tube formation, two samples show both 2D lattices (>2 microm) and tubes, and one sample shows only 2D lattices without tubes. We found that a lower tile dimensional anisotropy, weaker connection, and corrugated design favor the large 2D array formation, while the opposite (higher tile anisotropy, stronger connection, and uncorrugated design) favors tube formation. We discuss these observations in terms of an energy balance at equilibrium and the kinetic competition between diffusion-limited lateral lattice growth versus fluctuation of the lattice to form tubes at an early stage of the assembly. The DNA nanostructures and their self-assembly demonstrated herein not only provide a new repertoire of scaffolds to template the organization of nanoscale materials, but may also provide useful information for investigating other self-assembly systems.  相似文献   

9.
DNA three-way junctions formed from three 30-mer oligonucleotides that contain single-chained self-complementary sticky ends spontaneously self-assemble into 'nucleo-nanocages': the exo- and endo-nuclease digestion experiments indicate that defects such as the single and double strand end structures are absent on the spherical nano-assemblies, providing clear evidence for the closed nanocage structure.  相似文献   

10.
A shear flow induces the assembly of DNAs with the sticky spots. In order to strictly interpret the mechanism of shear-induced DNA assembly, Brownian dynamics simulations with the bead-spring model were carried out for these molecules at various ranges of the Weissenberg numbers (We). We calculate a formation time and analyze the radial distribution function of end beads and the probability distribution of fractional extension at the formation time to understand the mechanism of shear-induced assembly. At low Weissenberg number the formation time, which is defined as an elapsed time until a multimer forms for the first time, decreases rapidly, reaching a plateau at We = 1000. A shear flow changes the radial distribution of end beads, which is almost the same regardless of the Weissenberg number. A shear flow deforms and stretches the molecules and generates different distributions between end beads with a stickly spot. The fractional extension progresses rapidly in shear flow from a Gaussian-like distribution to a uniform distribution. The progress of the distribution of fractional extension increases the possibility of meeting of end beads. In shear flow, the inducement of the assembly mainly results from the progress of the probability distribution of fractional extension. We also calculate properties such as the radius of gyration, stretch, and so on. As the Weissenberg number increases, the radius of gyration at the formation time also increases rapidly, reaching a plateau at We = 1000.  相似文献   

11.
The double crossover junction (DX) is a fundamental building block for generating complex and varied structures from DNA. However, its implementation in functional devices is limited to the inherent properties of DNA itself. Here, we developed design strategies to generate the first metal–DX DNA tiles (DXM) by site‐specifically functionalizing the tile crossovers with tetrahedral binding pockets that coordinate CuI. These DX junctions bind two CuI ions independently at distinct sites, display greater thermal stability than native DX tiles upon metalation, and melt in a cooperative fashion. In addition, the right‐handed helical chirality of DNA is transferred to the metal centers. Our tiles display high metal ion selectivity, such that CuII is spontaneously reduced to CuI in situ. By modifying our design over three generations of tiles, we elucidated the thermodynamic and geometric requirements for the successful assembly of DXM tiles, which have direct applicability in developing robust, stable DNA‐based materials with electroactive, photoactive, and catalytic properties.  相似文献   

12.
A label-free and non-enzymatic amplification fluorescent method for detection of DNA has been developed by using hybridization chain reaction (HCR) and dsDNA-templated copper nanoparticles (CuNPs). First, the biotinylated capture DNA probes were immobilized on the streptavidin-modified beads through the interaction of biotin and streptavidin. Then, target DNA hybridized with the capture DNA probes, which formed a hybridized DNA with sticky end. The sticky end triggered the HCR process and formation of dsDNA polymers while two hairpin probes coexisted. Subsequently, the dsDNA polymers were employed as template for synthesis of CuNPs with excellent fluorescent properties, which provided a label-free, non-enzymatic signal response. Meanwhile, the fluorescence sensing depended on the target DNA triggered HCR, which render this method a high selectivity against single-base mismatch sequences. The concept and methodology developed in this work show great promise in the quantitative detection of DNA in biological and medical applications.  相似文献   

13.
The double crossover junction (DX) is a fundamental building block for generating complex and varied structures from DNA. However, its implementation in functional devices is limited to the inherent properties of DNA itself. Here, we developed design strategies to generate the first metal–DX DNA tiles (DXM) by site-specifically functionalizing the tile crossovers with tetrahedral binding pockets that coordinate CuI. These DX junctions bind two CuI ions independently at distinct sites, display greater thermal stability than native DX tiles upon metalation, and melt in a cooperative fashion. In addition, the right-handed helical chirality of DNA is transferred to the metal centers. Our tiles display high metal ion selectivity, such that CuII is spontaneously reduced to CuI in situ. By modifying our design over three generations of tiles, we elucidated the thermodynamic and geometric requirements for the successful assembly of DXM tiles, which have direct applicability in developing robust, stable DNA-based materials with electroactive, photoactive, and catalytic properties.  相似文献   

14.
Non-canonical interactions in DNA remain under-explored in DNA nanotechnology. Recently, many structures with non-canonical motifs have been discovered, notably a hexagonal arrangement of typically rhombohedral DNA tensegrity triangles that forms through non-canonical sticky end interactions. Here, we find a series of mechanisms to program a hexagonal arrangement using: the sticky end sequence; triangle edge torsional stress; and crystallization condition. We showcase cross-talking between Watson–Crick and non-canonical sticky ends in which the ratio between the two dictates segregation by crystal forms or combination into composite crystals. Finally, we develop a method for reconfiguring the long-range geometry of formed crystals from rhombohedral to hexagonal and vice versa. These data demonstrate fine control over non-canonical motifs and their topological self-assembly. This will vastly increase the programmability, functionality, and versatility of rationally designed DNA constructs.  相似文献   

15.
Double cohesion has proved to be a useful tool to assemble robust 2D arrays of large tiles. Here we present a variety of examples showing the utility of this approach. We apply this principle to the 3 types of 2D lattice sections of arrays whose individual tiles are inherently 3 dimensional, because they contain three vectors that span 3-space. This application includes motifs which are based on the tensegrity triangle, the six-helix bundle motif and on three skewed triple crossover molecules. All of these designs have the potential to form 3 dimensional structures if all three directions of propagation are allowed. If one direction is blunted, 2D arrays form, and all 3 combinations are presented here. In addition, a large parallelogram array that was not attainable previously using single duplex cohesion was also constructed using double cohesion. For comparison, arrays which use another type of double cohesion, double paranemic (PX) cohesion are also presented. Double cohesion of sticky ends proved to be the more effective tool to assemble large motifs into arrays.  相似文献   

16.
Transient absorption measurements of charge transfer (CT) demonstrated that the CT in the DNA assembly constructed by simply mixing DNAs with sticky ends occurs over 200 angstroms selectively to the complementary sticky end sequences.  相似文献   

17.
In order to examine the difference between shear-induced and extensional-induced associating polymer assemblies at the molecular level, Brownian dynamics simulations with the bead-spring model were carried out for model DNA molecules with sticky spots. The radial distribution of molecules overestimates from that in the absence of flow and increases with increasing Weissenberg number in extensional flow, but slightly underestimates without regard to shear rate in shear flow. The fractional extension progresses more rapidly in extensional flow than in shear flow and the distribution of fractional extension at the formation time has a relatively sharper peak and narrower spectrum in extensional flow than in shear flow. In shear flow, the inducement of the assembly mainly results from the progress of the probability distribution of fractional extension. However, in extensional flow, the assembly is induced by both the progress of the probability distribution and increasing the values of the radial distribution.  相似文献   

18.
Adriamycin intercalation and in situ interaction with double helix DNA was investigated using a voltammetric DNA-biosensor. Oxidation and reduction of adriamycin molecules intercalated in double helix DNA were investigated in order to understand the in vivo mechanism of action with this anti-neoplasic drug. The results showed that the interaction of adriamycin with DNA is potential-dependent causing contact between DNA guanine and adenine bases and the electrode surface such that their oxidation is easily detected. A mechanism for adriamycin reduction and oxidation in situ when intercalated in double helix DNA immobilised onto the glassy carbon electrode surface is presented and the formation of the mutagenic 8-oxoguanine explained.  相似文献   

19.
Patterning of solid surfaces with organic molecules has been recognized as a promising method to create functional 2D matrices with tunable structure and properties. In this work we use the lattice Monte Carlo simulations to study chiral pattern formation in adsorbed systems comprising simple molecular building blocks differing in shape. To that end we consider five-membered rigid isomers whose composite segments can occupy vertices of a triangular lattice and interact with short-range (nearest neighbors) forces. Our main focus is on those molecules which are prochiral, that is they can adopt mirror-image planar configurations when adsorbed. Moreover, the effect of orientational in-plane confinement of the molecules, which reflects their coupling with an external directional field, on the structure formation and chiral resolution in 2D is explored. The obtained results demonstrate that the confinement imposed on the surface enantiomers can induce their resolution and formation of extended homochiral domains. However, it is also shown that for certain molecular shapes the confinement can produce mixed racemic crystals instead of the homochiral assemblies. The insights from our simulation studies can be helpful in preliminary screening of molecular libraries to select optimal building blocks able to self-assembly into chiral 2D patterns with predefined architecture.  相似文献   

20.
For the development of surface functionalized bilayers, we have synthesized lipophilic oligonucleotides to combine the molecular recognition mechanism of nucleic acids and the self-assembly characteristics of lipids in planar membranes. A lipophilic oligonucleotide consisting of 21 thymidine units and two lipophilic nucleotides with an alpha-tocopherol moiety as a lipophilic anchor was synthesized using solid-phase methods with a phosphoramadite strategy. The interaction of the water soluble lipophilic oligonucleotide with vesicular lipid membranes and its capability to bind complementary DNA strands was studied using complementary methods such as NMR, EPR, DSC, fluorescence spectroscopy, and fluorescence microscopy. This oligonucleotide inserted stably into preformed membranes from the aqueous phase. Thereby, no significant perturbation of the lipid bilayer and its stability was observed. However, the non-lipidated end of the oligonucleotide is exposed to the aqueous environment, is relatively mobile, and is free to interact with complementary DNA strands. Binding of the complementary single-stranded DNA molecules is fast and accomplished by the formation of Watson-Crick base pairs, which was confirmed by 1H NMR chemical shift analysis and fluorescence resonance energy transfer. The molecular structure of the membrane bound DNA double helix is very similar to the free double-stranded DNA. Further, the membrane bound DNA double strands also undergo regular melting. Finally, in raft-like membrane mixtures, the lipophilic oligonucleotide was shown to preferentially sequester into liquid-disordered membrane domains.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号