首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Certain tight binding lattices host macroscopically degenerate flat spectral bands. Their origin is rooted in local symmetries of the lattice, with destructive interference leading to the existence of compact localized eigenstates. We study the robustness of this localization to disorder in different classes of flat band lattices in one and two dimensions. Depending on the flat band class, the flat band states can either be robust, preserving their strong localization for weak disorder W, or they are destroyed and acquire large localization lengths ξ that diverge with a variety of unconventional exponents ν, ξ ~ 1 /W ν .  相似文献   

2.
We consider mass-conserving self-similar solutions for Smoluchowski’s coagulation equation with kernel K(ξ,η)=(ξη) λ with λ∈(0,1/2). It is known that such self-similar solutions g(x) satisfy that x ?1+2λ g(x) is bounded above and below as x→0. In this paper we describe in detail via formal asymptotics the qualitative behavior of a suitably rescaled function h(x)=h λ x ?1+2λ g(x) in the limit λ→0. It turns out that \(h \sim 1+ C x^{\lambda/2} \cos(\sqrt{\lambda} \log x)\) as x→0. As x becomes larger h develops peaks of height 1/λ that are separated by large regions where h is small. Finally, h converges to zero exponentially fast as x→∞. Our analysis is based on different approximations of a nonlocal operator, that reduces the original equation in certain regimes to a system of ODE.  相似文献   

3.
The parabolic Anderson model is defined as the partial differential equation ? u(x, t)/? t = κ Δ u(x, t) + ξ(x, t)u(x, t), x ∈ ? d , t ≥ 0, where κ ∈ [0, ∞) is the diffusion constant, Δ is the discrete Laplacian, and ξ is a dynamic random environment that drives the equation. The initial condition u(x, 0) = u 0(x), x ∈ ? d , is typically taken to be non-negative and bounded. The solution of the parabolic Anderson equation describes the evolution of a field of particles performing independent simple random walks with binary branching: particles jump at rate 2d κ, split into two at rate ξ ∨ 0, and die at rate (?ξ) ∨ 0. In earlier work we looked at the Lyapunov exponents
$$ \lambda _{p}(\kappa ) = \lim\limits _{t\to \infty } \frac {1}{t} \log \mathbb {E} ([u(0,t)]^{p})^{1/p}, \quad p \in \mathbb{N} , \qquad \lambda _{0}(\kappa ) = \lim\limits _{t\to \infty } \frac {1}{t}\log u(0,t). $$
For the former we derived quantitative results on the κ-dependence for four choices of ξ : space-time white noise, independent simple random walks, the exclusion process and the voter model. For the latter we obtained qualitative results under certain space-time mixing conditions on ξ. In the present paper we investigate what happens when κΔ is replaced by Δ??, where ?? = {??(x, y) : x, y ∈ ? d , xy} is a collection of random conductances between neighbouring sites replacing the constant conductances κ in the homogeneous model. We show that the associated annealed Lyapunov exponents λ p (??), p?, are given by the formula
$$ \lambda _{p}(\mathcal{K} ) = \text{sup} \{\lambda _{p}(\kappa ) : \, \kappa \in \text{Supp} (\mathcal{K} )\}, $$
where, for a fixed realisation of ??, Supp(??) is the set of values taken by the ??-field. We also show that for the associated quenched Lyapunov exponent λ 0(??) this formula only provides a lower bound, and we conjecture that an upper bound holds when Supp(??) is replaced by its convex hull. Our proof is valid for three classes of reversible ξ, and for all ?? satisfying a certain clustering property, namely, there are arbitrarily large balls where ?? is almost constant and close to any value in Supp(??). What our result says is that the annealed Lyapunov exponents are controlled by those pockets of ?? where the conductances are close to the value that maximises the growth in the homogeneous setting. In contrast our conjecture says that the quenched Lyapunov exponent is controlled by a mixture of pockets of ?? where the conductances are nearly constant. Our proof is based on variational representations and confinement arguments.
  相似文献   

4.
We describe the electronic conductivity, as a function of the Fermi energy, in the Bernal bilayer graphene (BLG) in presence of a random distribution of vacancies that simulate resonant adsorbates. We compare it to monolayer (MLG) with the same defect concentrations. These transport properties are related to the values of fundamental length scales such as the elastic mean free path L e , the localization length ξ and the inelastic mean free path L i . Usually the later, which reflect the effect of inelastic scattering by phonons, strongly depends on temperature T. In BLG an additional characteristic distance l 1 exists which is the typical traveling distance between two interlayer hopping events. We find that when the concentration of defects is smaller than 1%–2%, one has l 1L e ? ξ and the BLG has transport properties that differ from those of the MLG independently of L i (T). Whereas for larger concentration of defects L e <l 1 ? ξ, and depending on L i (T), the transport in the BLG can be equivalent (or not) to that of two decoupled MLG. We compare two tight-binding model Hamiltonians with and without hopping beyond the nearest neighbors.  相似文献   

5.
We give a brief review of SU(2|1) supersymmetric quantum mechanics based on the worldline realizations of the supergroup SU(2|1) in the appropriate N = 4, d = 1 superspaces. The corresponding SU(2|1) models are deformations of standard N = 4, d = 1 models by a mass parameter m.  相似文献   

6.
The relation between the broken rotational symmetry of a system and the topology of its Fermi surface is studied for the two-dimensional system with the quasiparticle interaction f(p, p') having a sharp peak at |p ? p'| = q0. It is shown that, in the case of attraction and q0 = 2pF the first instability manifesting itself with the growth of the interaction strength is the Pomeranchuk instability. This instability appearing in the L = 2 channel gives rise to a second order phase transition to a nematic phase. The Monte Carlo calculations demonstrate that this transition is followed by a sequence of the first and second order phase transitions corresponding to the changes in the symmetry and topology of the Fermi surface. In the case of repulsion and small values of q0, the first transition is a topological transition to a state with the spontaneously broken rotational symmetry, namely, corresponding to the nucleation of L ? π(pF/q0 ? 1) small hole pockets at the distance pF ? q0 from the center and the deformation of the outer Fermi surface with the characteristic multipole number equal to L. At q0 → 0, when the model under study transforms to the two-dimensional Nozières model, the multipole number characterizing the spontaneous deformation is L → ∞, whereas the infinitely folded Fermi curve acquires the Hausdorff dimension D = 2 which corresponds to the state with the fermion condensate.  相似文献   

7.
Using the Monte Carlo simulation, we investigate a memory-impaired self-avoiding walk on a square lattice in which a random walker marks each of sites visited with a given probability p and makes a random walk avoiding the marked sites. Namely, p = 0 and p = 1 correspond to the simple random walk and the self-avoiding walk, respectively. When p> 0, there is a finite probability that the walker is trapped. We show that the trap time distribution can well be fitted by Stacy’s Weibull distribution \(b{\left( {\tfrac{a}{b}} \right)^{\tfrac{{a + 1}}{b}}}{\left[ {\Gamma \left( {\tfrac{{a + 1}}{b}} \right)} \right]^{ - 1}}{x^a}\exp \left( { - \tfrac{a}{b}{x^b}} \right)\) where a and b are fitting parameters depending on p. We also find that the mean trap time diverges at p = 0 as ~p ? α with α = 1.89. In order to produce sufficient number of long walks, we exploit the pivot algorithm and obtain the mean square displacement and its Flory exponent ν(p) as functions of p. We find that the exponent determined for 1000 step walks interpolates both limits ν(0) for the simple random walk and ν(1) for the self-avoiding walk as [ ν(p) ? ν(0) ] / [ ν(1) ? ν(0) ] = p β with β = 0.388 when p ? 0.1 and β = 0.0822 when p ? 0.1.  相似文献   

8.
It is shown how the static-gauge world-volume superfield actions of diverse superbranes on the AdSd+1 superbackgrounds can be systematically derived from nonlinear realizations of the appropriate AdS supersymmetries. The latter are treated as superconformal symmetries of flat Minkowski superspaces of the bosonic dimension d. Examples include the N = 1 AdS4 supermembrane, which is associated with the 1/2 partial breaking of the OSp(1|4) supersymmetry down to the N = 1, d = 3 Poincaré supersymmetry, and the T-duality related L3-brane on AdS5 and scalar 3-brane on AdS5 × S1, which are associated with two different patterns of 1/2 breaking of the SU(2, 2|1) supersymmetry. Another (closely related) topic is the AdS/CFT equivalence transformation. It maps the world-volume actions of the codimension-one AdSd+1 (super)branes onto the actions of the appropriate Minkowski (super)conformal field theories in the dimension d.  相似文献   

9.
10.
Analytic properties of the dimensionless static effective dielectric constant f(p, h) of a two-dimensional Rayleigh model (p is the concentration and h is the ratio of the dielectric constants of components) are considered as a function of the complex variable h. It is shown that the only singularities of the function f(p, h) are first-order poles for real h = h n < 0 (n = 1, 2, ...) with the condensation point h = ?1, which form an infinite discrete (countable) set. The positions of the first ten poles of the function f(p, h) and the residues at these points are calculated and represented graphically versus the concentration. Based on the results obtained, a pole-type approximate formula is proposed that describes the behavior of the function f(p, h) over a wide range of p and complex h.  相似文献   

11.
V. S. Pantuev 《JETP Letters》2017,105(10):631-634
Following our earlier finding based on RHIC data on the dominant jet production from nucleus corona region, we reconsider this effect in nucleus–nucleus collisions at the LHC energies. Our hypothesis was based on experimental data, which raised the idea of a finite formation time for the produced medium. At the RHIC energy and in low-density corona region, this time reaches about 2 fm/c. Following this hypothesis, the nuclear modification factor R AA at high p t should be independent on particle momentum, and the azimuthal anisotropy of high p t particles, v 2, should be finite. A separate prediction held that, at the LHC energy, the formation time in the corona region should be about 1 fm/c. New LHC data show that R AA is not flat and is rising with p t . We add to our original hypothesis an assumption that a fast parton traversing the produced medium loses the fixed portion of its energy. A shift of about 7 GeV from the original power law p ?6 production cross section in pp explains well all the observed R AA dependencies. The shift of about 7 GeV is also valid at the RHIC energy. We also show that the observed at the LHC dependence of v 2 at high p t and our previous predictions agree.  相似文献   

12.
The Influence of temperature in the range from 275 to 320 K on ESR spectra and magnetization m of ensembles of spherical gadolinium nanoparticles with the diameter from 89 to 18 nm was studied. The particles with d = 18 nm had a cubic face centered structure and no magnetic transition. At T > TC all particles were paramagnetic, and their g factors were g = 1.98 ± 0.02 irrespective of their size and structure. At T = TC the particles having 28 to 89 nm in size experienced a magnetic and orientation transition; at T < TC their m(H) dependences were described by the Langevin function, and the FMR lines broadened and shifted towards H = 0. FMR lines of the Gd particle ensembles showed a hysteresis behavior during magnetization reversal, which did not correlate with the coercivity of the particles. Dependences of the Gd nanoparticles FMR linewidth ΔH(T) changed proportionally to |TTC|.  相似文献   

13.
We discuss the Josephson effect for pairing states which break crystal symmetries in addition to gauge symmetry. We consider theE 1g andE 2u models for the low-temperature phase ofUPt 3, with order parameters Δ(E 1g )~p z (p x +ip y ) and Δ(E 2u )~p z (p x +ip y )2. We report calculations of Josephson critical currents, taking into account the effects of depairing at the interface. For singlet-triplet junctions the critical current is non-zero only for spin-orbit, spin-flip tunneling, and is found to be much smaller than the Ambegaokar-Baratoff value even when the spin-orbit tunneling amplitude is comparable to the spin-independent amplitude.  相似文献   

14.
We use the spin-rotation-invariant Green’s function method as well as thehigh-temperature expansion to discuss the thermodynamic properties of the frustratedspin-S J 1-J 2 Heisenbergmagnet on the body-centered cubic lattice. We consider ferromagnetic nearest-neighborbonds J 1<0 and antiferromagnetic next-nearest-neighbor bonds J 2 ≥ 0 andarbitrary spin S. We find that the transition point\hbox{$J_2^c$}J2cbetween the ferromagnetic ground state and theantiferromagnetic one is nearly independent of the spin S, i.e., it is very closeto the classical transition point\hbox{$J_2^{c,{\rm clas}}= \frac{2}{3}|J_1|$}J2c,clas=23|J1|. At finite temperatures we focus on the parameterregime\hbox{$J_2<J_2^c$}J2<J2cwith a ferromagnetic ground-state. We calculate theCurie temperature T C (S, J 2)and derive an empirical formula describing the influence of the frustration parameterJ 2 and spin S on T C . We find that theCurie temperature monotonically decreases with increasing frustration J 2, where veryclose to\hbox{$J_2^{c,{\rm clas}}$}J2c,clasthe T C (J 2)-curveexhibits a fast decay which is well described by a logarithmic term\hbox{$1/\textrm{log}(\frac{2}{3}|J_1|-J_{2})$}1/log(23|J1|?J2). To characterize the magnetic ordering below and aboveT C , we calculate thespin-spin correlation functions ?S 0 S R ?, the spontaneous magnetization, the uniform static susceptibilityχ 0 as well as the correlation lengthξ.Moreover, we discuss the specific heat C V and the temperaturedependence of the excitation spectrum. As approaching the transition point\hbox{$J_2^c$}J2csome unusual features were found, such as negativespin-spin correlations at temperatures above T C even though theground state is ferromagnetic or an increase of the spin stiffness with growingtemperature.  相似文献   

15.
This work aims to demonstrate the analytical solution of the Grad-Shafranov (GS) equation or generalized Ampere’s law, which is important in the studies of self-consistent 2.5-D solution for current sheet structures. A detailed mathematical development is presented to obtain the generating function as shown by Walker (RSPSA 91, 410, 1915). Therefore, we study the general solution of the GS equation in terms of the Walker’s generating function in details without omitting any step. The Walker’s generating function g(ζ) is written in a new way as the tangent of an unspecified function K(ζ). In this trend, the general solution of the GS equation is expressed as exp(??2Ψ) =?4|K (ζ)|2/cos2[K(ζ) ? K(ζ ?)]. In order to investigate whether our proposal would simplify the mathematical effort to find new generating functions, we use Harris’s solution as a test, in this case K(ζ) = arctan(exp(i ζ)). In summary, one of the article purposes is to present a review of the Harris’s solution. In an attempt to find a simplified solution, we propose a new way to write the GS solution using g(ζ) = tan(K(ζ)). We also present a new analytical solution to the equilibrium Ampere’s law using g(ζ) = cosh(b ζ), which includes a generalization of the Harris model and presents isolated magnetic islands.  相似文献   

16.
The probability of the nonradiative S-T intersystem crossing in dibenzo-p-dioxin is theoretically studied using a model for the vibronically induced spin-orbit coupling between electronic states and taking into account all out-of-plane vibrational modes. Several symmetry variants for the lowest S 1(ππ*) singlet state are considered. In the case of g symmetry of this state, a provision is made for the possibility of its vibronic coupling with the nearest dipole-active singlet 1 B 2u ππ* state. The rate constants K ST of the S 1 ? T(ππ*) transitions to the T 1(3 B 3g ) state are estimated taking into account several intermediate triplet T m (ππ*) states of g and u symmetry. For different symmetry types of the S 1 state, the effect of K ST on the fluorescence quantum yield ?fl is discussed. The 1 B 3g symmetry state is found to be the lowest S 1 state. It is found that the main contribution to K ST is made by the S 1(1 B 3g ) ? T 4(3 A g ) transition.  相似文献   

17.
By the method of functional integration the two-point functionS F for the spinor model with the interaction\( - \lambda (\bar \psi \psi )^2 \) is calculated in a two-dimensional space-time. After Fourier-transformationS F (p) results as a power series with respect to 1/√λ. If we change the order of terms, we get a series in powers of γp. Each coefficient is a series in powers of 1/√λ. The first terms of this series are considered as a good approximation for bigλ. By reasons of convergence of the integrals we must displace the expansion centre of the series in powers ofγ p fromp 2=0 top 2=a 2.  相似文献   

18.
An exact definition of the group velocity v g is proposed for a wave process with arbitrary dispersion relation ω = ω′(k) + ″(k). For the monochromatic approximation, a limit expression v g (k) is obtained. A condition under which v g (k) takes the form of the Kuzelev–Rukhadze expression [1] ′(k)/dk is found. In the general case, it appears that v g (k) is defined not only by the dispersion relation ω(k), but also by other elements of the initial problem. As applied to the dissipative medium, it is shown that v g (k) defines the field energy transfer velocity, and this velocity does not exceed thee light speed in vacuum. An expression for the energy transfer velocity is also obtained for the case where the dispersion relation is given in the form k = k′(ω) + ik″(ω) which corresponds to the boundary problem.  相似文献   

19.
A diamond anvil cell is used to investigate the effect of high pressure (up to 37.5 GPa) on the optical absorption spectra of a single crystal of nickel oxide (NiO). In addition, strain-gage measurements are used to experimentally investigate the V(P) equation of state at a hydrostatic pressure of up to 8.5 GPa in a high-pressure chamber of the “toroid” type. Measurements are performed at room temperature. Absorption bands are observed, which correspond to optical d-d transitions of Ni2+ ion in the crystal field of ligands 3A2g3T2g, 3A2g → {au1}E1g, 3A2g3T1g(F), and 3A2g1T2g. The values of energy of these transitions increase linearly with pressure, and their pressure coefficients are 7.3 ± 0.2, 2.87 ± 0.9, 9.7 ± 0.5, and 8.9 ± 0.3 meV/GPa, respectively. The pressure derivative of the crystal field parameter 10Dq corresponding to the 3A2g3T2g transition gives the pressure dependence of the magnitude of exchange integral J in the Anderson hybridization model. It is found that, in the pressure range from zero to 37.5 GPa, the behavior of the exchange integral J is largely defined by the hybridization parameter b = (10Dq/3). At the same time, the Coulomb interaction parameter Ueff is independent of pressure and, therefore, has no effect on the variation of J. The Coulomb interaction Ueff ≈ 7.47 ± 0.005 eV is determined. The experimental data on the equation of state are used to derive the \(J \propto V^\varepsilon \) correlation, where ε = ?2.99 ± 0.15, which is in good agreement with the predictions of Bloch’s theory (ε = ?10/3).  相似文献   

20.
A scheme for teleporting an arbitrary tripartite entangled state is proposed when three bipartite entangled states (|η〉) with continuous variables are used as quantum channels. Quantum teleportation can be carried out successfully if the receiver adopts an appropriate unitary transformation. The calculation is greatly simplified by virtue of the Schmidt decompositions of both tripartite entangled state |p t ,χ 2,χ 3〉 and |η〉. Any tripartite state which can be expanded in terms of |p t ,χ 2,χ 3〉 may be teleported in this way due to the completeness of |p t ,χ 2,χ 3〉.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号