首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The variations of N1–H proton release energy of G–M (M = Li, Na) cation have been investigated employing density functional theory using B3LYP/6-31++G**//B3LYP/6-31+G* method. There are three modes (NO mode, N mode and O mode) when the hydrated-M+ bonds to guanine. The bonding energy of the hydrated M+ to the guanine reduces following the increase in the number of water molecules. The proton release energies of the G–M+ complexes are calculated at the condition of the different numbers of water molecules and the different modes of water molecules bonded on the G–M+. The results show that the difference of proton release energy on three modes is very small, and the proton release energies of the Na+ complexes are slightly larger than those of the Li+ complexes. The effect on the N1–H proton release is very small when the water molecules bond on the M+ cation, but the effect is very large when the water molecule bonds on the N1–H proton and the proton releases as the hydrated proton. The IR vibrational frequencies of the hydrated G–M+ complexes are calculated using analytic second derivative methods at the B3LYP/6-31+G* level. The vibrational frequency analyses show that the changes of the vibrational frequency are consistent with the changes of geometry and the changes of the N1–H proton release energy. The N1–H proton release (N1–H proton release energy: 45–60 kcal/mol) of the guanine occurs easily under the biological environment.  相似文献   

2.
The stabilization energies (ΔEform) calculated for the formation of the Li+ complexes with mono‐, di‐ tri‐ and tetra‐glyme (G1, G2, G3 and G4) at the MP2/6‐311G** level were ?61.0, ?79.5, ?95.6 and ?107.7 kcal mol?1, respectively. The electrostatic and induction interactions are the major sources of the attraction in the complexes. Although the ΔEform increases by the increase of the number of the O???Li contact, the ΔEform per oxygen atom decreases. The negative charge on the oxygen atom that has contact with the Li+ weakens the attractive electrostatic and induction interactions of other oxygen atoms with the Li+. The binding energies calculated for the [Li(glyme)]+ complexes with TFSA? anion (glyme=G1, G2, G3, and G4) were ?106.5, ?93.7, ?82.8, and ?70.0 kcal mol?1, respectively. The binding energies for the complexes are significantly smaller than that for the Li+ with the TFSA? anion. The binding energy decreases by the increase of the glyme chain length. The weak attraction between the [Li(glyme)]+ complex (glyme=G3 and G4) and TFSA? anion is one of the causes of the fast diffusion of the [Li(glyme)]+ complex in the mixture of the glyme and the Li salt in spite of the large size of the [Li(glyme)]+ complex. The HOMO energy level of glyme in the [Li(glyme)]+ complex is significantly lower than that of isolated glyme, which shows that the interaction of the Li+ with the oxygen atoms of glyme increases the oxidative stability of the glyme.  相似文献   

3.
The potential energy surfaces for the interatomic interaction in the Li+HCOO system have been investigated byab initio methods within the rigid-molecule approximation. Analytical potential expressions were fitted to 133 calculated SCF energies for the Li+-HCOO interaction, 42 SCF energies for the Li+-Li+ interaction, and 332 SCF energies for the HCOO-HCOO interaction. The global minimum on the Li+-HCOO surface is –170 kcal/mol and corresponds to the lithium ion lying on the C2 axis of the formate ion at 2.2 Å from the carbon atom on the oxygen side. The cation-cation and anion-anion interactions are repulsive everywhere, although the potential surface is markedly anisotropic for the HCOO-HCOO interaction.  相似文献   

4.
Models of interstitial Li+ and F ions in an LiF crystal have been calculated by the nonempirical Hartree-Fock-Roothaan method with the 4-31G+ basis and with the aid of a nonempirical pairwise potential. It has been shown that the energies needed for the adiabatic transfer of Li+ and F ions from infinity to interstitial positions in Li4F4 cubes are equal to +2.3 and +8.1 eV, respectively. The energies required for the transfer of Li+ and F ions from infinity to interstitial positions in a large cubic cluster of 4000 LiF molecules (a cube with an edge consisting of 20 atoms) are determined to a considerable extent by the long-range interactions of nonelectro-static nature and are equal to –0.25 and +9.9 eV, respectively, without consideration of the relaxation of the lattice.Translated from Izvestiya Akademii Nauk SSSR, Seriya Khimicheskaya, No. 10, pp. 2272–2277, October, 1989.We express our thanks to P. Charskii for supplying his version of the HONDO-5 + MP2 program and to V. G. Zakzhevskii for supplying the GAUSSIAN-SM program.  相似文献   

5.
Ab initio calculations have been performed to study the association of-propiolactam and-propiolactone and their aliphatic analoguesN-methyl acetamide and methyl acetate with different metal monocations: Li+, Na+, Mg+, and Al+, in an effort to investigate cyclization effects on the gas-phase basicities of amides and esters, when the reference acid is not a proton. Similarly to what was found for protonation,N-methyl acetamide and-propiolactam are more basic than methyl acetate and-propiolactone, when the reference acids are the aforementioned metal monocations. However, cyclization effects on the corresponding binding energies for both kind of compounds do not parallel those observed for protonation energies, and-lactone is as basic as methyl acetate when the reference acid is Li+ and slightly more basic than methyl acetate when the attaching ion is Na+. This implies that when the interactions of the bases with the reference acids are essentially electrostatic the reactivity patterns change with respect to those observed when the interactions are essentially covalent.  相似文献   

6.
Ab initio calculations at second-order Møller-Plesset perturbation theory with the 6-31 + G(d,p) basis set have been performed to determine the equilibrium structures and energies of a series of negative-ion hydrogen-bonded complexes with H2O, H2S, HCN, and HCl as proton donors and OH, SH, CN, and Cl as proton acceptors. The computed stabilization enthalpies of these complexes are in agreement to within the experimental error of 1 kcal mol–1 with the gas-phase hydrogen bond enthalpies, except for HOHOH, in which case the difference is 1.8 kcal mol–1. The structures of these complexes exhibit linear hydrogen bonds and directed lone pairs of electrons except for complexes with H2O as the proton donor, in which cases the hydrogen bonds deviate slightly from linearity. All of the complexes have equilibrium structures in which the hydrogen-bonded proton is nonsymmetrically bound, although the symmetric structures of HOHOH and ClHCl are only slightly less bound than the equilibrium structures. MP2/6-31 + G(d,p) hydrogen bond energies calculated at optimized MP2/B-31 + G(d,p) and at optimized HF/6-31G(d) geometries are similar. Using HF/6-31G(d) frequencies to evaluate zero-point and thermal vibrational energies does not introduce significant error into the computed hydrogen bond enthalpies of these complexes provided that the hydrogen-bonded proton is definitely nonsymmetrically bound at both Hartree-Fock and MP2.  相似文献   

7.
Summary Vanadyl sulfate, VOSO4, was characterized as the mobile phase for the ion exchange separation of Li+, Na+, NH 4 + , and K+ using indirect photometric detection at 254 nm. Detection limits ranged from 0.2 ppm for Li+ to 1 ppm for K+. Indirect electrochemical detection of these separated cations by reduction of VO (II) to V3+ was compared to spectrophotometric detection. The potential of the vanadate species, HVO 4 2– , for the separation of F, Cl, and SO 4 2– , with indirect photometric detection was also demonstrated.  相似文献   

8.
Summary Roothaan-Hartree-Fock wave functions in Slater-type basis sets are reported for the cations Li+-Cs+ and anions H-I using the double even tempering (DET) method of selecting orbital exponents. The DET total energies do not differ from the corresponding numerical Hartree-Fock values by more than 0.2 millihartrees for the cations and anions. The present results together with the previous ones for neutral atoms [Theor Chim Acta 88:273 (1994)] provide a compilation of DET wave functions of near Hartree-Fock quality for all the neutral and singly-charged atoms with the number of electronsN54.  相似文献   

9.
The formation and fragmentation energies of the proton and sodium cation complexes with monosubstituted methane, cyclohexane, and benzene derivatives in which carbon atoms are bonded to substituents (NH2, OH, F, Cl, Br, ONO2, NO2, COOH, CN, and Ph) were calculated by the B3LYP/6-31G(d) method. For [M + Na]+ complexes, the formation energies are much lower (and differ from one another to a much lesser extent), while the dissociation energies are much higher, than the corresponding energies of the [M + H]+ complexes. Na+ cation shows a lower selectivity toward localization at functional groups in molecules compared to H+. Published in Russian in Izvestiya Akademii Nauk. Seriya Khimicheskaya, No. 2, pp. 246–249, February, 2008.  相似文献   

10.
We have carried out a series of molecular mechanics calculations on the alkali ion complexes of valinomycin. For the ions Na+, K+, Rb+, and Cs+ we have found three-fold rotationally symmetric conformations as the lowest energy structures, while for Li+ a markedly asymmetric configuration is preferred. The relative free energies of the complexes show that Li+ is by far the poorest binding partner in solution, followed by Na+, which is in turn far poorer than any of the three larger ions. The binding selectivity derives from the slower variation of the complexation free energy with ionic size than the ionic solvation free energy, so that the ionophore is unable to compete with the solvent for the smaller ions. Our calculated strain energies suggest that valinomycin's failure to form complexes with the smaller ions in solution is due partially to the rigidity of the ionophore structure, which prevents the central cavity from contracting to accommodate them. Certain geometric criteria indicate that K+ provides the best fit to the binding site, although there is some inconsistency between the energetic and geometric criteria of binding ability.  相似文献   

11.
Summary Ab initio molecular orbital calculations give small stabilization energies for the various Na(CH4)+ adducts (less than 4 kcal mol–1), but predict a stronger binding for the copper compounds (about 13 kcal mol–1). The different behaviour of Na+ and Cu+, already present at the SCF level, is reinforced by electron correlation. This can be attributed to an important contribution of the dispersion energy to the binding energy of the copper ion: about 40% of the total, including basis set superposition corrections.Dedicated to Mrs A. Pullman  相似文献   

12.
The most stable conformation of ion-molecule complexes involving a CO molecule were surveyed by the use of Hartree-Fock (HF) MO and third-order Moller-Plesset perturbation (MP3) methods with a 6–31G* basis set ion = H+, Li+, Na+, K+, Bc2+, Mg2+, and Ca2+. The MP3 level of theory reveals the ion-CO conformation in which the ion bonds to a carbon atom of CO to be the most stable; these MP3 results are contrary to the HF ones. Binding energies of ion-molecule complexes involving CO and N2 were computed; MP3 energies are in good agreement with the experimental ones. The computed binding energies of cation-N2 are about one-third of cation-NH3 due to the absence of dipole moment and the smaller polarizability of N2. The decrease in binding energy in cation-CO and -N2 complexes, with increasing cation size, is mainly caused by the decrease of the electrostatic and polarization stabilizations.  相似文献   

13.
Optimum geometries and stabilization energies are determined for complexes of H2O, NH3, CH4, C2H4, CO, and N2 with metal cations including Li+, Na+, K+, Rb+, Be2+, Mg2+, Ca2+, Zn2+, and Al3+, for the complex (HO)2PO 2 ...Mg2+ and for the complexes of water with F, Cl, and Br by SCF calculations employing the MINI-1 minimal gaussian basis sets. The Boys-Bernardi method was used to evaluate the superposition error. Comparison with the extended basis set results revealed that the MINI-1 set gives uniformly good results for a broad variety of ionic complexes and therefore should be preferred to other small basis sets.  相似文献   

14.
Changes in electron spin resonance (ESR) spectra of the manganese (II) ion are used to determine thermodynamic association constants for MnCl+ and MnSO 4 0 complexes from 25 to 170°C. The technique employed requires minimal sample handling and preparation. Pressure increase had a negligible effect on the association constants which increase from 4 m–1 at 50°C to 200 m–1 at 170°C for MnCl+ and from 200 m–1 at 25°C to 5700 m–1 at 170°C for MnSO 4 0 . The ratio of inner to outer sphere complexes decreases with increasing temperature to 120°C and then increases from 120 to 170°C for both chloride and sulfate complexes. Enthalpies, entropies, heat capacities, and Gibb's free energies determined for each of the reactions compare well with values determined by other methods. These results confirm the validity of the high temperature and pressure ESR approach, which can be used to study other high temperature association reactions of Mn+2 and, by competitive effects, association reactions of metals that do not have an ESR signal.  相似文献   

15.
The energetic and structural optimized of a calix[4]arene with and without alkali-metal cations are presented with performance of various quantum chemical methods such as Hartree--Fock, second order Møller-Plesset perturbation theory, and density functional theory. The geometry optimizations have been carried out with the 3-21G (Li+--Cs+) and 3-21G(d,p) (Li+--K+) and the 3-21G basis sets for Cs+ and Rb+. Additional single-point energy ab initio calculations for Li+–K+ were carried out at HF/6--31G, HF/6-31G (d,p), HF/6--311G(d,p) for complexes of Li+ and Na+. The calculations were carried out to analyze the complexation of calix[4]arene with alkali metal cationic species (Li+, Na+, K+, Rb+, and Cs+). Assumption to isolate the effects of the aromatic core and cation-π interactions. Particular emphasis has been on conformational binding selectivity and the structural characterization of the complexes, the smaller cation as Li+ and Na+ has been placed in the lower rim's of the calix[4]arene's cavity. The large cations like K+, Rb+, and Cs+ take placed in upper rim and the endo (inclusive) complexation is driven by cation-π interactions, that reflect a superior interaction with two phenol rings. The endo complexation of Cs+ with calix[4]arene is in agreement with X-ray diffraction data. The binding modes of calixarene-cation systems are studied to involve cooperative effects between cation-π and electrostatic forces.  相似文献   

16.
Absolute bond dissociation energies of water to sodium glycine cations and glycine to hydrated sodium cations are determined experimentally by competitive collision-induced dissociation (CID) of Na+Gly(H2O)x, x = 1–4, with xenon in a guided ion beam tandem mass spectrometer. The cross sections for CID are analyzed to account for unimolecular decay rates, internal energy of reactant ions, multiple ion–molecule collisions, and competition between reaction channels. Experimental results show that the binding energies of water and glycine to the complexes decrease monotonically with increasing number of water molecules. Ab initio calculations at four different levels show good agreement with the experimental bond energies of water to Na+Gly(H2O)x, x = 0–3, and glycine to Na+(H2O), whereas the bond energies of glycine to Na+(H2O)x, x = 2–4, are systematically higher than the experimental values. These discrepancies may provide some evidence that these Na+Gly(H2O)x complexes are trapped in excited state conformers. Both experimental and theoretical results indicate that the sodiated glycine complexes are in their nonzwitterionic forms when solvated by up to four water molecules. The primary binding site for Na+ changes from chelation at the amino nitrogen and carbonyl oxygen of glycine for x = 0 and 1 to binding at the C terminus of glycine for x = 2–4. The present characterization of the structures upon sequential hydration indicates that the stability of the zwitterionic form of amino acids in solution is a consequence of being able to solvate all charge centers.  相似文献   

17.
Density Functional Theory calculations have been used to study the complexation of a ketocyanine dye with Li+ and Mg2+ ions. Structures of dye–ion complexes and singlet transition energies have been found in vacuum and in the acetonitrile solution using different DFT functionals. It has been demonstrated that accounting for the solvent effect plays crucial role in correct reproduction of electronic spectrum of complexed dye. The best agreement between calculated transition energies or spectral red shifts and experimental values has been obtained for hybrid O3LYP functional.  相似文献   

18.
The influence of the nature of the heteroatom on the Ni+ gas-phase binding energies of HCC–XH3 (X is C, Si, or Ge) compounds has been investigated through the use of high-level density functional theory methods. The structures of the corresponding Ni+ complexes were optimized at the B3LYP/6-311G(d,p) level of theory. Final energies were obtained in single-point B3LYP/6-311+G(2df,2p) calculations. Nonconventional complexes, in which the metal cation interacts simultaneously with the CC system and with one of the X–H bonds of the substituent XH3 group, play a significant role in the binding of Ni+ to HCC–XH3 (X is Si or Ge) derivatives. Conversely, such nonconventional complexes are not local minima of the propyne–Ni+ potential-energy surface. This establishes a clear distinction between unsaturated carbon derivatives and the Si- and Ge-containing analogues as far as bonding to transition-metal monocations is concerned. Actually, the attachment of Ni+ to HCC–XH3 (X is Si or Ge) compounds in the gas phase yields a mixture of conventional and nonconventional complexes. These agostic-type interactions can be viewed as a dative bond from the X–H bonding orbital toward the empty s orbital of the metal, and a back-donation from the valence electron pairs of the metal into the X–H antibonding orbital of the neutral species.Proceedings of the 11th International Congress of Quantum Chemistry satellite meeting in honor of Jean-Louis Rivail  相似文献   

19.
The hydrogen, carbon dioxide, and carbon monoxide gas adsorption and storage capacity of lithium-decorated cyclopropane ring systems were examined with quantum chemical calculations at density functional theory, DFT M06-2X functional using 6-31G(d) and cc-pVDZ basis sets. To examine the reliability of M06-2X DFT functional, a few representative systems are also examined with complete basis set CBS-QB3 method and CCSD-aug-cc-pVTZ level of theory. The cyclopropane systems can bind to one Li+ ion; however, the corresponding the methylated systems can bind with two Li+ ions. The cyclopropane systems can adsorb six hydrogen molecules with an average binding energy of 3.8 kcal/mol. The binding free energy (ΔG) values suggest that the hydrogen adsorption process is feasible at 273.15 K. The calculation of desorption energies indicates the recyclable property of gas adsorbed complexes. The same number of CO2 and CO gas molecules can also be adsorbed with an average binding energy of −14.4 kcal/mol and −10.7 kcal/mol, respectively. The carbon dioxide showed ~3–4 kcal/mol better binding energy as compared to carbon monoxide and hence such designed systems can function as a potential candidate for the separation of these flue gas molecules. The nature of interactions in complexes was examined with atoms in molecules analysis revealed the electrostatic nature for the interaction of Li+ ion with cyclopropane rings. The chemical hardness and electrophilicity calculations showed that the gas adsorbed complexes are rigid and therefore robust as gas storage materials.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号