首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The solvation structure of the lithium ion in room-temperature ionic liquids 1-ethyl-3-methylimidazolium bis(trifluoromethanesulfonyl) imide (EMI(+)TFSI(-)) and N-butyl-N-methylpyrrolidinium bis(trifluoromethanesulfonyl) imide (BMP(+0TFSI(-)) has been studied by Raman spectroscopy and DFT calculations. Raman spectra of EMI(+)TFSI(-) and BMP(+)TFSI(-) containing Li(+)TFSI(-) over the range 0.144-0.589 and 0.076-0.633 mol dm(-3), respectively, were measured at 298 K. A strong 744 cm-1 band of the free TFSI(-) ion in the bulk weakens with increasing concentration of the lithium ion, and it revealed by analyzing the intensity decrease that the two TFSI(-) ions bind to the metal ion. The lithium ion may be four-coordinated through the O atoms of two bidentate TFSI(-) ions. It has been established in our previous work that the TFSI(-) ion involves two conformers of C(1) (cis) and C(2) (trans) symmetries in equilibrium, and the dipole moment of the C(1) conformer is significantly larger than that of the C(2) conformer. On the basis of these facts, the geometries and SCF energies of possible solvate ion clusters [Li(C(1)-TFSI(-))(2)](-), [Li(C(1)-TFSI(-))(C(2)-TFSI(-))](-), and [Li(C(2)-TFSI(-))(2)](-) were examined using the theoretical DFT calculations. It is concluded that the C(1) conformer is more preferred to the C(2) conformer in the vicinity of the lithium ion.  相似文献   

2.
Molecular dynamics (MD) simulations have been performed on N-methyl-N-propylpyrrolidinium bis(trifluoromethanesulfonyl)imide (mppy(+)TFSI(-)) and N,N-dimethyl- pyrrolidinium bis(trifluoromethanesulfonyl)imide (mmpy(+)TFSI(+)) ionic liquids (ILs) doped with 0.25 mol fraction LiTFSI salt at 303-500 K. The liquid density, ion self-diffusion coefficients, and conductivity predicted by MD simulations were found to be in good agreement with experimental data, where available. MD simulations reveal that the Li(+) environment is similar in mppy(+)TFSI(-) and mmpy(+)TFSI(+) ILs doped with LiTFSI. The Li(+) cations were found to be coordinated on average by slightly less than four oxygen atoms with each oxygen atom being contributed by a different TFSI(-) anion. Significant lithium aggregation by sharing up to three TFSI(-) anions bridging two lithiums was observed, particularly at lower temperatures where the lithium aggregates were found to be stable for tens of nanoseconds. Polarization of TFSI(-) anions is largely responsible for the formation of such lithium aggregates. Li(+) transport was found to occur primarily by exchange of TFSI(-) anions in the first coordination shell with a smaller (approximately 30%) contribution also due to Li(+) cations diffusing together with their first coordination shell. In both ILs, ion self-diffusion coefficients followed the order Li(+) < TFSI(-) < mmpy(+) or mppy(+) with all ion diffusion in mmpy(+)TFSI(-) being systematically slower than that in mppy(+)TFSI(-). Conductivity due to the Li(+) cation in LiTFSI doped mppy(+)TFSI(-) IL was found to be greater than that for a model poly(ethylene oxide)(PEO)/LiTFSI polymer electrolyte but significantly lower than that for an ethylene carbonate/LiTFSI liquid electrolyte. Finally, the time-dependent shear modulus for the LiTFSI doped ILs was found to be similar to that for a model poly(ethylene oxide)(PEO)/LiTFSI polymer electrolyte on the subnanosecond time scale.  相似文献   

3.
Ionization condition and ionic structures of the lithium ionic liquid electrolytes, LiTFSI/EMI-TFSI/(PEG or silica), were investigated through the measurements of ionic conductivity and diffusion coefficient. The size of the hydrodynamic lithium species (rLi) evaluated from the Stokes-Einstein equation was 0.90 nm before gelation with the PEG or silica. This reveals that the TFSI- anions from the solvent are coordinated on Li+ for solvation, forming, for example, Li(TFSI)4(3-) and Li(TFSI)2- in the electrolyte solution. By the dispersion of PEG for gelation, rLi increased up to 1.8 nm with the 10 wt % of PEG. This indicates that the lithium species is directly interacted with the oxygen sites on the polymer chains and the lithium species migrate, reflecting the polymer by hopping from site to site. In case of the silica dispersion, rLi decreased to 0.7 nm at 10 wt % silica. Although the silica surface with silanol groups fundamentally attracts Li+, the lithium does not migrate from site to site on the silica surface as in the gel of the polymer and follows random walk behavior in the network of the liquid-phase pathways in the two-phase gel. In the process, that solvated TFSI- anions are partially removed may be due to the attractive effect of H+, which was dissociated from the silanol group. It is concluded that the dispersed silica is effective to modify the hydrodynamic lithium species to be appropriate for charge transport as reducing the size and anionic charge of Li(TFSI)4(3-) by removing one or two TFSI- anions.  相似文献   

4.
Room temperature ionic liquids (ILs) are stable liquids composed of anions and cations. 1-ethyl-3-methyl-imidazolium (EMIm, EMI) is a popular and important cation that produces thermally stable ILs with various anions. In this study two amide-type anions, bis(trifluoro-methanesulfonyl)amide [N(SO(2)CF(3))(2), TFSA, TFSI, NTf(2), or Tf(2)N] and bis(fluorosulfonyl)amide [(N(SO(2)F)(2), FSA, or FSI] were investigated by multinuclear NMR spectroscopy. In addition to EMIm-TFSA and EMIm-FSA, lithium-salt-doped binary systems were prepared (EMIm-TFSA-Li and EMIm-FSA-Li). The spin-lattice relaxation times (T(1)) were measured by (1)H, (19)F, and (7)Li NMR spectroscopy and the correlation times of (1)H NMR, τ(c)(EMIm) (8 × 10(-10) to 3 × 10(-11) s) for the librational molecular motion of EMIm and those of (7)Li NMR, τ(c)(Li) (5 × 10(-9) to 2 × 10(-10) s) for a lithium jump were evaluated in the temperature range between 253 and 353 K. We found that the bulk viscosity (η) versus τ(c)(EMIm) and cation diffusion coefficient D(EMIm) versus the rate 1/τ(c)(EMIm) have good relationships. Similarly, linear relations were obtained for the η versus τ(c)(Li) and the lithium diffusion coefficient D(Li) versus the rate 1∕τ(c)(Li). The mean one-jump distances of Li were calculated from τ(c)(Li) and D(Li). The experimental values for the diffusion coefficients, ionic conductivity, viscosity, and density in our previous paper were analyzed by the Stokes-Einstein, Nernst-Einstein, and Stokes-Einstein-Debye equations for the neat and binary ILs to clarify the physicochemical properties and mobility of individual ions. The deviations from the classical equations are discussed.  相似文献   

5.
Ionization conditions of each ionic species in lithium ionic liquid electrolytes, LiTFSI/BMI-TFSI and LiTFSI/BDMI-TFSI, were confirmed based on the diffusion coefficients of the species measured by the pulsed gradient spin-echo (PGSE) NMR technique. We found that the diffusion coefficient ratios of the cation and anion species D(Li)(obs)/D(F)(obs) of the lithium salt and D(H)(obs)/D(F)(obs) of the ionic liquid solvent were effective guides to evaluate the ionization condition responsible for their mobility. Lithium ions were found to be stabilized, forming the solvated species as Li(TFSI)3(2-). TFSI- anion coordination could be relaxed by the dispersion of silica to form a gel electrolyte, LiTFSI/BDMI-TFSI/silica. It is expected that the oxygen sites on the silica directly attract Li+, releasing the TFSI- coordination. The lithium species, loosing TFSI- anions, kept a random walk feature in the gel without the diffusion restriction attributed from the strong chemical and morphological effect as that in the gel with the polymer. We can conclude that the silica dispersion is a significant approach to provide the appropriate lithium ion condition as a charge-transporting species in the ionic liquid electrolytes.  相似文献   

6.
Lithium salt solutions of Li(CF3SO2)2N, LiTFSI, in a room-temperature ionic liquid (RTIL), 1-butyl-2,3-dimethyl-imidazolium cation, BMMI, and the (CF3SO2)2N(-), bis(trifluoromethanesulfonyl)imide anion, [BMMI][TFSI], were prepared in different concentrations. Thermal properties, density, viscosity, ionic conductivity, and self-diffusion coefficients were determined at different temperatures for pure [BMMI][TFSI] and the lithium solutions. Raman spectroscopy measurements and computer simulations were also carried out in order to understand the microscopic origin of the observed changes in transport coefficients. Slopes of Walden plots for conductivity and fluidity, and the ratio between the actual conductivity and the Nernst-Einstein estimate for conductivity, decrease with increasing LiTFSI content. All of these studies indicated the formation of aggregates of different chemical nature, as it is corroborated by the Raman spectra. In addition, molecular dynamics (MD) simulations showed that the coordination of Li+ by oxygen atoms of TFSI anions changes with Li+ concentration producing a remarkable change of the RTIL structure with a concomitant reduction of diffusion coefficients of all species in the solutions.  相似文献   

7.
The oxidative stability of glyme molecules is enhanced by the complex formation with alkali metal cations. Clear liquid can be obtained by simply mixing glyme (triglyme or tetraglyme) with lithium bis(trifluoromethylsulfonyl)amide (Li[TFSA]) in a molar ratio of 1:1. The equimolar complex [Li(triglyme or tetraglyme)(1)][TFSA] maintains a stable liquid state over a wide temperature range and can be regarded as a room-temperature ionic liquid consisting of a [Li(glyme)(1)](+) complex cation and a [TFSA](-) anion, exhibiting high self-dissociativity (ionicity) at room temperature. The electrochemical oxidation of [Li(glyme)(1)][TFSA] takes place at the electrode potential of ~5 V vs Li/Li(+), while the oxidation of solutions containing excess glyme molecules ([Li(glyme)(x)][TFSA], x > 1) occurs at around 4 V vs Li/Li(+). This enhancement of oxidative stability is due to the donation of lone pairs of ether oxygen atoms to the Li(+) cation, resulting in the highest occupied molecular orbital (HOMO) energy level lowering of a glyme molecule, which is confirmed by ab initio molecular orbital calculations. The solvation state of a Li(+) cation and ion conduction mechanism in the [Li(glyme)(x)][TFSA] solutions is elucidated by means of nuclear magnetic resonance (NMR) and electrochemical methods. The experimental results strongly suggest that Li(+) cation conduction in the equimolar complex takes place by the migration of [Li(glyme)(1)](+) cations, whereas the ligand exchange mechanism is overlapped when interfacial electrochemical reactions of [Li(glyme)(1)](+) cations occur. The ligand exchange conduction mode is typically seen in a lithium battery with a configuration of [Li anode|[Li(glyme)(1)][TFSA]|LiCoO(2) cathode] when the discharge reaction of a LiCoO(2) cathode, that is, desolvation of [Li(glyme)(1)](+) and insertion of the resultant Li(+) into the cathode, occurs at the electrode-electrolyte interface. The battery can be operated for more than 200 charge-discharge cycles in the cell voltage range of 3.0-4.2 V, regardless of the use of ether-based electrolyte, because the ligand exchange rate is much faster than the electrode reaction rate.  相似文献   

8.
In this study, both experimental ionic conductivity measurements and the first-principles simulations are employed to investigate the Li(+) ionic diffusion properties in lithium-based imides (Li(2)NH, Li(2)Mg(NH)(2) and Li(2)Ca(NH)(2)) and lithium amide (LiNH(2)). The experimental results show that Li(+) ions present superionic conductivity in Li(2)NH (2.54 × 10(-4) S cm(-1)) and moderate ionic conductivity in Li(2)Ca(NH)(2) (6.40 × 10(-6) S cm(-1)) at room temperature; while conduction of Li(+) ions is hardly detectable in Li(2)Mg(NH)(2) and LiNH(2) at room temperature. The simulation results indicate that Li(+) ion diffusion in Li(2)NH may be mediated by Frenkel pair defects or charged vacancies, and the diffusion pathway is more likely via a series of intermediate jumps between octahedral and tetrahedral sites along the [001] direction. The calculated activation energy and pre-exponential factor for Li(+) ion conduction in Li(2)NH are well comparable with the experimentally determined values, showing the consistency of experimental and theoretical investigations. The calculation of the defect formation energy in LiNH(2) reveals that Li defects are difficult to create to mediate the Li(+) ion diffusion, resulting in the poor Li(+) ion conduction in LiNH(2) at room temperature.  相似文献   

9.
Organic small structure quinones go with ionic liquids electrolytes would exhibit ultrastable electrochemical properties.In this study,calix[6]quinone(C6Q) cathode was matched with ionic liquid electrolyte Li[TFSI]/[PY13][TFSI](bis(trifluoromethane)sulfonimide lithium salt/N-methyl-N-pro pylpyrrolidinium bis(trifluoromethanesulfonyl)amide) to assemble lithium-ion batteries(LIBs).The electrochemical performance of LIBs was systematically studied.The capacity retention rates of C6Q through 1000 cycles at current densities of 0.2 C and 0.5 C were 70% and 72%,respectively.At 5 C, the capacity was maintained at 190 mAh g-1 after 1000 cycles,and 155 mAh g-1 even after 10,000 cycles,comparable to inorganic materials.This work would give a big push to the practical process of organic electrode materials in energy storage.  相似文献   

10.
By first principles calculations, we explore the possibility that Na(-)(H(2)O)(n) and Li(-)(H(2)O)(n) clusters, which have been measured previously by photoelectron experiments, could serve as gas-phase molecular models for the solvation of two electrons. Such models would capture the electron-electron interaction in a solution environment, which is missed in the well-known anionic water clusters (H(2)O)(n) (-). Our results show that by n = 10, the two loosely bound s electrons in Li(-)(H(2)O)(n) are indeed detached from lithium, and they could exist in either the singlet (spin-paring) or the triplet (spin-coupling) state. In contrast, the two electrons would prefer to stay on the sodium atom in Na(-)(H(2)O)(n) and on the surface of the cluster. The formation of a solvated electron pair and the variation in solvation structures make these two cluster series interesting subjects for further experimental investigation.  相似文献   

11.
Room-temperature ionic liquids (RTIL, IL) are stable liquids composed of anions and cations. N-methyl-N-propyl-pyrrolidinium (P(13), Py(13), PYR(13), or mppy) is an important cation and produces stable ILs with various anions. In this study two amide-type anions, bis(trifluoromethanesulfonyl)amide [N(SO(2)CF(3))(2), TFSA, TFSI, NTf(2), or Tf(2)N] and bis(fluorosulfonyl)amide [N(SO(2)F)(2), FSA, or FSI], were investigated. In addition to P(13)-TFSA and P(13)-FSA, lithium salt doped samples were prepared (P(13)-TFSA-Li and P(13)-FSA-Li). The individual ion diffusion coefficients (D) and spin-lattice relaxation times (T(1)) were measured by (1)H, (19)F, and (7)Li NMR. At the same time, the ionic conductivity (σ), viscosity (η), and density (ρ) were measured over a wide temperature range. The van der Waals volumes of P(13), TFSA, FSA, Li(TFSA)(2), and Li(FSA)(3) were estimated by molecular orbital calculations. The experimental values obtained in this study were analyzed by the classical Stokes-Einstein, Nernst-Einstein (NE), and Stokes-Einstein-Debye equations and Walden plots were also made for the neat and binary ILs to clarify physical and mobile properties of individual ions. From the temperature-dependent velocity correlation coefficients for neat P(13)-TFSA and P(13)-FSA, the NE parameter 1-ξ was evaluated. The ionicity (electrochemical molar conductivity divided by the NE conductivity from NMR) and the 1-ξ had exactly the same values. The rotational and translational motions of P(13) and jump of a lithium ion are also discussed.  相似文献   

12.
A free standing polymer electrolytes films, containing poly(glycidyl methacrylate) (PGMA) as the polymer host, lithium perchlorate (LiClO4), and ionic liquid 1-butyl-3-methylimidazolium bis(trifluoromethanesulfonyl) imide [Bmim][TFSI] as a plasticizer was successfully prepared via the solution casting method. The XRD analysis revealed the amorphous nature of the electrolyte. ATR-FTIR and thermal studies confirmed the interaction and complexation between the polymer host and the ionic liquid. The maximum ionic conductivity of the solid polymer electrolyte was found at 2.56 × 10–5 S cm–1 by the addition of 60 wt % [Bmim][TFSI] at room temperature and increased up to 3.19 × 10–4 S cm–1 at 373 K, as well as exhibited a transition of temperature dependence of conductivity: Arrhenius-like behavior at low and high temperatures.  相似文献   

13.
Infrared spectra of Li(NH3)(n) clusters as a function of size are reported for the first time. Spectra have been recorded in the N-H stretching region for n=4-->7 using a mass-selective photodissociation technique. For the n=4 cluster, three distinct IR absorption bands are seen over a relatively narrow region, whereas the larger clusters yield additional features at higher frequencies. Ab initio calculations have been carried out in support of these experiments for the specific cases of n=4 and 5 for various isomers of these clusters. The bands observed in the spectrum for Li(NH3)(4) can all be attributed to N-H stretching vibrations from solvent molecules in the first solvation shell. The appearance of higher frequency N-H stretching bands for n > or =5 is assigned to the presence of ammonia molecules located in a second solvent shell. These data provide strong support for previous suggestions, based on gas phase photoionization measurements, that the first solvation shell for Li(NH3)(n) is complete at n=4. They are also consistent with neutron diffraction studies of concentrated lithium/liquid ammonia solutions, where Li(NH3)(4) is found to be the basic structural motif.  相似文献   

14.
It is a very urgent and important task to improve the safety and high‐temperature performance of lithium/lithium‐ion batteries (LIBs). Here, a novel ionic liquid, 1‐(2‐ethoxyethyl)‐1‐methylpyrrolidinium bis(trifluoromethylsulfonyl)imide (PYR1(2o2)TFSI), was designed and synthesized, and then mixed with dimethyl carbonate (DMC) as appropriate solvent and LiTFSI lithium salt to produce an electrolyte with high ionic conductivity for safe LIBs. Various characterizations and tests show that the highly flexible ether group could markedly reduce the viscosity and provide coordination sites for Li‐ion, and the DMC could reduce the viscosity and effectively enhance the Li‐ion transport rate and transference number. The electrolyte exhibits excellent electrochemical performance in Li/LiFeO4 cells at room temperature as well as at a high temperature of 60 °C. More importantly, with the addition of DMC, the IL‐based electrolyte remains nonflammable and appropriate DMC can effectively inhibit the growth of lithium dendrites. Our present work may provide an attractive and promising strategy for high performance and safety of both lithium and lithium‐ion batteries.  相似文献   

15.
Solid polymer electrolytes (SPEs) are compounds of great interest as safe and flexible alternative ionics materials, particularly suitable for energy storage devices. We study an unusual dependence on the salt concentration of the ionic conductivity in an SPE system based on poly(ethylene carbonate) (PEC). Dielectric relaxation spectroscopy reveals that the ionic conductivity of PEC/lithium bis(trifluoromethanesulfonyl)imide (LiTFSI) electrolyte continues to increase with increasing salt concentration because the segmental motion of the polymer chains is enhanced by the plasticizing effect of the imide anion. Fourier transfer‐infrared (FTIR) spectroscopy suggests that this unusual phenomenon arises because of a relatively loose coordination structure having moderately aggregated ions, in contrast to polyether‐based systems. Comparative FTIR study against PEC/lithium perchlorate (LiClO4) electrolytes suggests that weak ionic interaction between Li and TFSI ions is also important. Highly concentrated electrolytes with both reasonable conductivity and high lithium transference number (t+) can be obtained in the PEC/LiTFSI system as a result of the unusual salt concentration dependence of the conductivity and the ionic solvation structure. The resulting concentrated PEC/LiTFSI electrolytes have extraordinary oxidation stability and prevent any Al corrosion reaction in a cyclic voltammetry. These are inherent effects of the highly concentrated salt. © 2016 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2016 , 54, 2442–2447  相似文献   

16.
The new oxothiomolybdate anion [Mo8S8O8(OH)8[HWO5(H2O)]]3- (denoted HMo8W3-) has been synthesized in aqueous solution by an acido-basic condensation reaction. Four (Mo(V)2S2O2) building blocks are connected through hydroxo bridges around a central [W(VI)O6] octahedron. X-ray and neutron diffraction studies have been performed on single crystals of the lithium salt Li3[Mo8S8O8(OH)8[HWO5(H2O)]] x 18H2O (Li3HMo8W x 18H2O) in an aqueous grown from HMo8W3- solution of LiCl (1 M). The neutron diffraction experiment enabled us to locate both the protons and the lithium ions. In the structure of Li3HMo8W x 18H20, ring-shaped anions interleaved by a cluster of disordered hydrogen-bonded water molecules stack on top of each other along lithium pillars. The lithium columns are formed by alternating edge-sharing octahedra and tetrahedra, with one lithium site in four being totally vacant. Ionic conductivity measurements on pressed pellets have shown that Li3HMo8W x 18H2O is a good ionic conductor at room temperature (sigma = 10(-5) S cm(-1)), but the ionic conductivity on single crystals is smaller by two orders of magnitude and is isotropic; this suggests the main path of conduction involves surface protons rather than lithium ions of the bulk.  相似文献   

17.
Room temperature ionic liquids (RTILs), especially pyrrolidinium based RTILs with bis(trifluoromethane‐sulfonyl)imide (TFSI) as counterion, are frequently proposed as promising electrolyte component candidates thanks to their high thermal as well as high oxidation stability. In order to avoid a resource intensive experimental approach, mainly based on trial and error experiments, a computational screening method for pre‐selecting suitable candidate molecules was adopted and three homologous series compounds were synthesized by modifying the cation structure of pyrrolidinium RTILs. The obtained high purity RTILs: methyl‐methylcarboxymethyl pyrrolidinium TFSI (MMMPyrTFSI), methyl‐ethylcarboxymethyl pyrrolidinium TFSI (MEMPyrTFSI) and methylpropylcarboxymethyl pyrrolidinium TFSI (MPMPyrTFSI) revealed excellent thermal stabilities higher than 300 °C. Furthermore, MMMPyrTFSI and MPMPyrTFSI exhibit high oxidation stability up to 5.4 V vs. Li/Li+. No aluminum corrosion of current collector was observed at 5 V vs. Li/Li+. In addition to that, these RTILs display a superior salt (LiTFSI) solubility (3.0–3.5 M), compared to the unmodified RTIL 1‐butyl‐1‐methylpyrrolidinium TFSI (Pyr14TFSI) (1.5–2.0 M) at room temperature. All these properties make novel ester modified RTILs promising and interesting candidates for application in rechargeable lithium batteries.  相似文献   

18.
Lithium-sulfur batteries with high energy density are considered as one of the most promising future energy storage devices. However, the parasitic lithium polysulfides shuttle phenomenon severely hinders the commercialization of such batteries. Ionic liquids have been found to suppress the lithium polysulfides solubility, diminishing the shuttle effect effectively. Herein, we performed classical molecular dynamics simulations to explore the microscopic mechanism and transport behaviors of typical Li2S8 species in ionic liquids and ionic liquid-based electrolyte systems. We found that the trifluoromethanesulfonate anions ([OTf]) exhibit higher coordination strength with lithium ions compared with bis(trifluoromethanesulfonyl)imide anions ([TFSI]) in static microstructures. However, the dynamical characteristics indicate that the presence of the [OTf] anions in ionic liquid electrolytes bring faster Li+ exchange rate and easier dissociation of Li+ solvation structures. Our simulation models offer a significant guidance to future studies on designing ionic liquid electrolytes for lithium-sulfur batteries.  相似文献   

19.
A novel ionic liquid, never reported in literature until now, was properly designed, synthesized and preliminary investigated. This material was prepared combining the N-methylpyrrolidinium cation (PYR1(2S1))+, exhibiting a sulfur atom in the alkyl side chain, with the bis(trifluoromethanesulfonyl)imide anion, (TFSI), to be addressed as safer electrolyte component for sulfur-based battery systems. The presence of sulfur within the cation side chain was found to prevent the crystallization of the ionic liquid even in the presence of lithium salt. Cyclic voltammetries have clearly indicated that Li+ cation exhibits good mobility and is reversibly plated/stripped in PYR1(2S1)TFSI–LiTFSI electrolytes with high efficiency.  相似文献   

20.
A new kind of polymer electrolyte is prepared from N-methyl-N-propylpiperidinium bis (trifluoromethanesulfonyl) imide (PP1.3TFSI), polyethylene oxide (PEO), and lithium bis (trifluoromethanesulfonyl) imide (LiTFSI). IR and X-ray diffraction results demonstrate that the addition of ionic liquid decreases the crystallization of PEO. Thermal and electrochemical properties have been tested for the solid polymer electrolytes, the addition of the room temperature molten salt PP1.3TFSI to the conventional P(EO)20LiTFSI polymer electrolyte leads to the improvement of the thermal stability and the ionic conductivity (x = 1.27, 2.06 × 10−4 S cm−1 at room temperature), and the reasonable lithium transference number is also obtained. The Li/LiFePO4 cell using this polymer electrolyte shows promising reversible capacity, 120 mAh g−1 at room temperature and 164 mAh g−1 at 55 °C.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号