首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Hole-burning and single photosynthetic complex spectroscopy were used to study the excitonic structure and excitation energy-transfer processes of cyanobacterial trimeric Photosystem I (PS I) complexes from Synechocystis PCC 6803 and Thermosynechococcus elongatus at low temperatures. It was shown that individual PS I complexes of Synechocystis PCC 6803 (which have two red antenna states, i.e., C706 and C714) reveal only a broad structureless fluorescence band with a maximum near 720 nm, indicating strong electron-phonon coupling for the lowest energy C714 red state. The absence of zero-phonon lines (ZPLs) belonging to the C706 red state in the emission spectra of individual PS I complexes from Synechocystis PCC 6803 suggests that the C706 and C714 red antenna states of Synechocystis PCC 6803 are connected by efficient energy transfer with a characteristic transfer time of approximately 5 ps. This finding is in agreement with spectral hole-burning data obtained for bulk samples of Synechocystis PCC 6803. The importance of comparing the results of ensemble (spectral hole burning) and single-complex measurements was demonstrated. The presence of narrow ZPLs near 710 nm in addition to the broad fluorescence band at approximately 730 nm in Thermosynechococcus elongatus (Jelezko et al. J. Phys. Chem. B 2000, 104, 8093-8096) has been confirmed. We also demonstrate that high-quality samples obtained by dissolving crystals of PS I of Thermosynechococcus elongatus exhibit stronger absorption in the red antenna region than any samples studied so far by us and other groups.  相似文献   

2.
Absorption, fluorescence excitation, emission, and hole-burning (HB) spectra were measured at liquid helium temperatures for the PS I-CP43' supercomplexes of Synechocystis PCC 6803 grown under iron stress conditions and for respective trimeric PS I cores. Results are compared with those of room temperature, time-domain experiments (Biochemistry 2003, 42, 3893) as well as with the low-temperature steady-state experiments on PS I-CP43' supercomplexes of Synechococcus PCC 7942 (Biochim. Biophys. Acta 2002, 1556, 265). In contrast to the CP43' of Synechococcus PCC 7942, CP43' of Synechocystis PCC 6803 possesses two low-energy states analogous to the quasidegenerate states A and B of CP43 of photosystem II (J. Phys. Chem. B 2000, 104, 11805). Energy transfer between the CP43' and the PS I core occurs, to a significant degree, through the state A, characterized with a broader site distribution function (SDF). It is demonstrated that the low temperature (T = 5 K) excitation energy transfer (EET) time between the state A of CP43' (IsiA) and the PS I core in PS I-CP43' supercomplexes from Synechocystis PCC 6803 is about 60 ps, which is significantly slower than the EET observed at room temperature. Our results are consistent with fast (< or =10 ps) energy transfer from state B to state A in CP43'. Energy absorbed by the CP43' manifold has, on average, a greater chance of being transferred to the reaction center (RC) and utilized for charge separation than energy absorbed by the PS I core antenna. This indicates that energy is likely transferred from the CP43' to the RC along a well-defined path and that the "red antenna states" of the PS I core are localized far away from that path, most likely on the B7-A32 and B37-B38 dimers in the vicinity of the PS I trimerization domain (near PsaL subunit). We argue that the A38-A39 dimer does not contribute to the red antenna region.  相似文献   

3.
We compared the optical properties of the trimeric photosystem (PS) I complexes of the primordial cyanobacterium Gloeobacter violaceus PCC 7421 with those of Synechocystis sp. PCC 6803. Gloeobacter violaceus PS I showed (1) a shorter difference maximum of P700 by approximately 2 nm, (2) a smaller antenna size by approximately 10 chlorophyll (Chl) a molecules and (3) an absence of Red Chls. The energy transfer kinetics in the antennae at physiological temperatures were very similar between the two species due to the thermal equilibrium within the antenna; however, they differed at 77 K where energy transfer to Red Chls was clearly observed in Synechocystis sp. PCC 6803. Taken together with the lower P700 redox potential in G. violaceus by approximately 60 mV, we discuss differences in the optical properties of the PS I complexes with respect to the amino acid sequences of core proteins and further to evolution of cyanobacteria.  相似文献   

4.
We present time-resolved fs two-photon pump-probe data measured with photosystem I (PS I) of Thermosynechococcus elongatus. Two-photon excitation (lambda(exc)/2 = 575 nm) in the spectral region of the optically forbidden first excited singlet state of the carotenoids, Car S1, gives rise to a 800 fs and a 9 ps decay component of the Car S1 --> S(n) excited-state absorption with an amplitude of about 47 +/- 16% and 53 +/- 10%, respectively. By measuring a solution of pure beta-carotene under exactly the same conditions, only a 9 ps decay component can be observed. Exciting PS I at exactly the same spectral region via one-photon excitation (lambda(exc) = 575 nm) also does not show any sub-ps component. We ascribe the observed constant of 800 fs to a portion of about 47 +/- 16% beta-carotene states that can potentially transfer their energy efficiently to chlorophyll pigments via the optically dark Car S1 state. We compared these data with conventional one-photon pump-probe data, exciting the optically allowed second excited state, Car S2. This comparison demonstrates that the fast dynamics of the optically forbidden state can hardly be unravelled via conventional one-photon excitation only because the corresponding Car S1 populations are too small after Car S2 --> Car S1 internal conversion. A direct comparison of the amplitudes of the Car S1 --> S(n) excited-state absorption of PS I and beta-carotene observed after Car S2 excitation allows determination of a quantum yield for the Car S1 formation in PS I of 44 +/- 5%. In conclusion, an overall Car S2 --> Chl energy-transfer efficiency of approximately 69 +/- 5% is observed at room temperature with 56 +/- 5% being transferred via Car S2 and probably very hot Car S1 states and 13 +/- 5% being transferred via hot and "cold" Car S1 states.  相似文献   

5.
A two-color (3+1(')) pump-probe scheme is employed to investigate Rydberg wave packet dynamics in carbon disulfide (CS(2) (*)). The state superpositions are created within the 4f and 5p Rydberg manifolds by three photons of the 400 nm pump pulse, and their temporal evolution is monitored with femtosecond time-resolved photoelectron spectroscopy using an 800 nm ionizing probe pulse. The coherent behavior of the non-stationary superpositions are observed through wavepacket revivals upon ionization to either the upper (12) or lower (32) spin-orbit components of CS(2) (+). The results show clearly that the composition of the wavepacket can be efficiently controlled by the power density of the excitation pulse over a range from 500 GWcm(2) to 10 TWcm(2). The results are consistent with the anticipated ac-Stark shift for 400 nm light and demonstrate an effective method for population control in molecular systems. Moreover, it is shown that Rydberg wavepackets can be formed in CS(2) with excitation power densities up to 10 TWcm(2) without significant fragmentation. The exponential 1e population decay (T(1)) of specific excited Rydberg states are recovered by analysis of the coherent part of the signal. The dissociation lifetimes of these states are typically 1.5 ps. However, a region exhibiting a more rapid decay ( approximately 800 fs) is observed for states residing in the energy range of 74 450-74 550 cm(-1), suggestive of an enhanced surface crossing in this region.  相似文献   

6.
Polarized femtosecond pump-probe spectroscopy is used to observe electronic wavepacket motion for vibrational wavepackets centered on a conical intersection. After excitation of a doubly degenerate electronic state in a square symmetric silicon naphthalocyanine molecule, electronic motions cause a approximately 100 fs drop in the polarization anisotropy that can be quantitatively predicted from vibrational quantum beat modulations of the pump-probe signal. Vibrational symmetries are determined from the polarization anisotropy of the vibrational quantum beats. The polarization anisotropy of the totally symmetric vibrational quantum beats shows that the electronic wavepackets equilibrate via the conical intersection within approximately 200 fs. The relationship used to predict the initial electronic polarization anisotropy decay from the asymmetric vibrational quantum beat amplitudes indicates that the initial width of the vibrational wavepacket determines the initial speed of electronic wavepacket motion. For chemically reactive conical intersections, which can have 1000 times greater stabilization energies than the one observed here, the same theory predicts electronic equilibration within 2 fs. Such electronic movements would be the fastest known chemical processes.  相似文献   

7.
The pump-probe polarization anisotropy is computed for molecules with a nondegenerate ground state, two degenerate or nearly degenerate excited states with perpendicular transition dipoles, and no resonant excited-state absorption. Including finite pulse effects, the initial polarization anisotropy at zero pump-probe delay is predicted to be r(0) = 3/10 with coherent excitation. During pulse overlap, it is shown that the four-wave mixing classification of signal pathways as ground or excited state is not useful for pump-probe signals. Therefore, a reclassification useful for pump-probe experiments is proposed, and the coherent anisotropy is discussed in terms of a more general transition dipole and molecular axis alignment instead of experiment-dependent ground- versus excited-state pathways. Although coherent excitation enhances alignment of the transition dipole, the molecular axes are less aligned than for a single dipole transition, lowering the initial anisotropy. As the splitting between excited states increases beyond the laser bandwidth and absorption line width, the initial anisotropy increases from 3/10 to 4/10. Asymmetric vibrational coordinates that lift the degeneracy control the electronic energy gap and off-diagonal coupling between electronic states. These vibrations dephase coherence and equilibrate the populations of the (nearly) degenerate states, causing the anisotropy to decay (possibly with oscillations) to 1/10. Small amounts of asymmetric inhomogeneity (2 cm(-1)) cause rapid (130 fs) suppression of both vibrational and electronic anisotropy beats on the excited state, but not vibrational beats on the ground electronic state. Recent measurements of conical intersection dynamics in a silicon napthalocyanine revealed anisotropic quantum beats that had to be assigned to asymmetric vibrations on the ground electronic state only [Farrow, D. A.; J. Chem. Phys. 2008, 128, 144510]. Small environmental asymmetries likely explain the observed absence of excited-state asymmetric vibrations in those experiments.  相似文献   

8.
The BLUF protein Slr1694 from the cyanobacterium Synechocystis sp. PCC6803 is characterized by absorption and emission spectroscopy. Slr1694 expressed from E. coli which non-covalently binds FAD, FMN, and riboflavin (called Slr1694(I)), and reconstituted Slr1694 which dominantly contains FAD (called Slr1694(II)) are investigated. The receptor conformation of Slr1694 (dark adapted form Slr1694(r)) is transformed to the putative signalling state (light adapted form Slr1694(s)) with red-shifted absorption and decreased fluorescence efficiency by blue-light excitation. In the dark at 22 degrees C, the signalling state recovers back to the initial receptor state with a time constants of about 14.2s for Slr1694(I) and 17s for Slr1694(II). Quantum yields of signalling state formation of approximately 0.63+/-0.07 for both Slr1694(I) and Slr1694(II) were determined by transient transmission measurements and intensity dependent steady-state transmission measurements. Extended blue-light excitation causes some bound flavin conversion to the hydroquinone form and some photo-degradation, both with low quantum efficiency. The flavin-hydroquinone re-oxidizes slowly back (time constant 5-9 min) to the initial flavoquinone form in the dark. A photo-cycle dynamics scheme is presented.  相似文献   

9.
Time-resolved photoion and photoelectron velocity mapped images from NO(2) excited close to its first dissociation limit [to NO(X(2)Pi) + O((3)P(2))] have been recorded in a two colour pump-probe experiment, using the frequency-doubled and frequency-tripled output of a regeneratively amplified titanium-sapphire laser. At least three processes are responsible for the observed transient signals; a negative pump-probe signal (corresponding to a 266 nm pump), a very short-lived transient close to the cross-correlation of the pump and probe pulses but on the 400 nm pump side, and a longer-lived positive pump-probe signal that exhibits a signature of wavepacket motion (oscillations). These transients have two main origins; multiphoton excitation of the Rydberg states of NO(2) by both 266 and 400 nm light, and electronic relaxation in the 1(2)B(2) state of NO(2), which leads to a quasi-dissociated NO(2) high in the 1(2)A(1) electronic ground state and just below the dissociation threshold. The wavepacket motion that we observe is ascribed to states exhibiting free rotation of the O atom about the NO moiety. These states, which are common for loosely bound systems such as a van der Waals complex but unusual for a chemically-bound molecule, have previously been observed in the frequency domain by optical double resonance spectroscopy but never before in the time domain.  相似文献   

10.
Picosecond time-resolved mid-infrared absorption changes of the wild type green fluorescent protein from Aequorea victoria are reported on structural events during the photocycle. Concomitant with rapid H/D transfer following excitation of the neutral A state at 400 nm, a transient signal at 1721/1711 cm(-1) (H/D) developed belonging to protonated glutamate 222, which was definitively assigned using the E222D mutant from the altered proton-transfer kinetics to aspartate in addition to the altered band position and intensity in the spectra. A transient at 1697 cm(-1), assigned to a structural perturbation of glutamine 69, had a H/D kinetic isotope effect of >32, showing the conformational dynamics to be sensitive to the active site H/D vibrations. The kinetic data up to 2 ns after excitation in the 1250-1800 cm(-1) region in D2O provided 10 and 75 ps time constants for the excited-state deuteron transfer and the associated A1* - A1 and A2* - A2 difference spectra and showed the radiative intermediate I state vibrations and the transient accumulation of the long-lived ground-state intermediate I2. Assignments of chromophore modes for the A1, A2, and I2 ground states are proposed on the basis of published model compound studies (Esposito, A. P.; Schellenberg, P.; Parson, W. W.; Reid, P. J. J. Mol. Struct. 2001, 569, 25 and He, X.; Bell, A. F.; Tonge, P. J. J. Phys. Chem. B 2002, 106, 6056). Tentative assignments for the singlet-state intermediates A1*, A2*, and I* are discussed. An unexpected and unassigned band that may be a C=C chromophore vibration was observed in the ground state (1665 cm(-1)) as well as in all photocycle intermediates. Optical dumping of the transient I population was achieved using an additional 532 nm pulse and the directly obtained I2 - I* difference spectrum was highly similar to the I2 - I* photocycle spectrum. The pump-dump-probe spectrum differed from the pump-probe photocycle difference spectrum with respect to the intensity of the phenol 1 mode at 1578 cm(-1), suggesting stronger delocalization of the negative charge onto the phenolic ring of the anionic chromophore in the dumped I2 state. Indication for structural heterogeneity of the chromophore, Glu 222, and the chromophore environment was found in the two parallel proton-transfer reactions and their distinct associated ground- and intermediate-state vibrations. Vibrational spectral markers at 1695 cm(-1) assigned to Gln 69, at 1631 cm(-1) belonging to a C=C mode, and at 1354 cm(-1) belonging to a phenolate vibration further indicated the I2 and I* states to be unrelaxed.  相似文献   

11.
The photoreactions of the Pr ground state of cyanobacterial phytochrome Cph1 from Synechocystis PCC 6803 have been investigated by picosecond time-resolved mid-infrared spectroscopy at ambient temperature. With femtosecond excitation of the Pr state at 640 nm, the photoisomerized Lumi-R product state is generated with kinetics and associated difference spectra indicative of vibrational cooling with tau(1) = 3 ps time constant and excited state decay with tau(1) = 3 ps, tau(2) = 14 ps, and tau(3) = 134 ps time constants. The Lumi-R state is characterized by downshifted absorption of three C=C modes assigned to C(15)=C(16), C(4)=C(6), and a delocalized C=C mode, in addition to the downshifted C(19)=O mode. The Lumi-R minus Pr difference spectrum is indicative of global restructuring of the chromophore on the ultrafast timescale, which is discussed in light of C(15) Z/E photoisomerization in addition to changes near C(5), which could be low bond order torsional angle changes.  相似文献   

12.
Singlet fluorescence lifetimes of adenosine, cytidine, guanosine, and thymidine, determined by femtosecond pump-probe spectroscopy (Pecourt, J.-M. L.; Peon, J.; Kohler, B. J. Am. Chem. Soc. 2000, 122, 9348. Pecourt, J.-M. L.; Peon, J.; Kohler, B. J. Am. Chem. Soc. 2001, 123, 10370), show that the excited states produced by 263 nm light in these nucleosides decay in the subpicosecond range (290-720 fs). Ultrafast radiationless decay to the ground state greatly reduces the probability of photochemical damage. In this work we present a theoretical study of isolated cytosine, the chromophore of cytidine. The experimental lifetime of 720 fs indicates that there must be an ultrafast decay channel for this species. We have documented the possible decay channels and approximate energetics, using a valence-bond derived analysis to rationalize the structural details of the paths. The mechanism favored by our calculations and the experimental data involves (1) a two-mode decay coordinate composed of initial bond length inversion followed by internal vibrational energy redistribution (IVR) to populate a carbon pyramidalization mode, (2) a state switch between the pi,pi* and nO,pi* (excitation from oxygen lone pair) excited states, and (3) decay to the ground state through a conical intersention. A second decay path through the nN,pi* state (excitation from the nitrogen lone pair), with a higher barrier, involves out-of-plane bending of the amino substituent.  相似文献   

13.
The effective fluorescence cross-section of photosystem 2 (PS2) was defined by measurements of chlorophyll a fluorescence induction curves for the wild type of the unicellular cyanobacterium Synechocystis sp. PCC6803, C-phycocyanin deficient mutant (CK), and mutant that totally lacks phycobilisomes (PAL). It was shown that mutations lead to a strong decrease of the PS2 effective fluorescence cross-section. For instance, the effective fluorescence cross-section of PS2 for wild type, CK and PAL mutants excited at λ(ex)=655 nm were found to be 896, 220 and 83 ?(2) respectively. Here we present an estimation of energy transfer efficiency from phycobilisomes to the pigment-protein complexes of PS2. It was shown that the PS2 fluorescence enhancement coefficient reaches a maximum value of 10.7 due to the energy migration from phycobilisomes. The rate constant of energy migration was found to be equal to 1.04 × 10(10) s(-1).  相似文献   

14.
A promising material in medicine, electronics, optoelectronics, electrochemistry, catalysis, and photophysics, tetrasulphonated aluminum phthalocyanine (AlPcS(4)), is investigated by means of steady-state and time-resolved pump-probe spectroscopies. Absorption and steady-state fluorescence spectroscopy indicate that AlPcS(4) is essentially monomeric. Spectrally resolved pump-probe data are recorded on time scales ranging from femtoseconds to nanoseconds. The nature of these fast processes and pathways of the competing relaxation processes from the initially excited electronic states in aqueous and organic (dimethyl sulfoxide) solutions are discussed. The decays and bleaching recovery have been fitted in the ultrafast window (0-10 ps) and later time window extending to nanoseconds (0-1 ns). While the excited-state dynamics have been found to be sensitive to the solvent environment, we were able to show that the fast dynamics is described by three time constants in the ranges of 115-500 fs, 2-25 ps, and 150-500 ps. We were able to ascribe these three time constants to different processes. The shortest time constants have been assigned to vibrational wavepacket dynamics. The few picosecond components have been assigned to vibrational relaxation in the excited electronic states. Finally, the 150-500 ps components represent the decay from S(1) to the ground state. The experimental and theoretical treatment proposed in this paper provides a basis for a substantial revision of the commonly accepted interpretation of the Soret transition (B transition) that exists in the literature.  相似文献   

15.
Rotationally resolved resonant two-photon ionization (R2PI) spectra of ScCo and YCo are reported. The measured spectra reveal that these molecules possess ground electronic states of (1)Sigma(+) symmetry, as previously found in the isoelectronic Cr(2) and CrMo molecules. The ground state rotational constants for ScCo and YCo are B(0)(")=0.201 31(22) cm(-1) and B(0) (")=0.120 96(10) cm(-1), corresponding to ground state bond lengths of r(0) (")=1.812 1(10) A and r(0) (")=1.983 0(8) A, respectively. A single electronic band system, assigned as a (1)Pi<--X (1)Sigma(+) transition, has been identified in both molecules. In ScCo, the (1)Pi state is characterized by T(0)=15,428.8, omega(e)(')=246.7, and omega(e)(')x(e)(')=0.73 cm(-1). In YCo, the (1)Pi state has T(0)=13 951.3, omega(e)(')=231.3, and omega(e)(')x(e) (')=2.27 cm(-1). For YCo, hot bands originating from levels up to v(")=3 are observed, allowing the ground state vibrational constants omega(e)(")=369.8, omega(e)(")x(e)(")=1.47, and Delta G(12)(")=365.7 cm(-1) to be deduced. The bond energy of ScCo has been measured as 2.45 eV from the onset of predissociation in a congested vibronic spectrum. A comparison of the chemical bonding in these molecules to related molecules is presented.  相似文献   

16.
The early stages of the ring opening reaction of 1,3-cyclohexadiene to form its isomer 1,3,5-hexatriene, upon excitation to the ultrashort-lived 1 1B2 state, were explored. A series of one-color two-photon ionization/photoelectron spectra reveal a prominent vibrational progression with a frequency of 1350 cm(-1), which is interpreted in a dynamical picture as resulting from the ultrafast wave packet dynamics associated with the ring opening reaction. Photoionization in two-color three-photon and one-color four-photon ionization schemes show an ionization pathway via the same ultrashort-lived 1 1B2 state, and in addition, a series of Rydberg states with quantum defects of 0.93, 0.76, and 0.15, respectively. Using those Rydberg states as probes for the reaction dynamics in a time-resolved pump-probe experiment provides a direct observation of the elusive 2 1A1 state that has been implicated as an intermediate step between the initially excited 1 1B2 state and the ground electronic state. The rise and decay times for the 2 1A1 state were found to be 55 and 84 fs, respectively.  相似文献   

17.
Vibronically resolved resonant two-photon ionization and dispersed fluorescence spectra of the organometallic radicals CrC(2)H, CrCH(3), and NiCH(3) are reported in the visible and near-infrared wavelength regions. For CrC(2)H, a complicated vibronic spectrum is found in the 11 100-13 300 cm(-1) region, with a prominent vibrational progression having omega(e) (')=426.52+/-0.84 cm(-1), omega(e) (')x(e) (')=0.74+/-0.13 cm(-1). Dispersed fluorescence reveals a v(")=1 level of the ground state with DeltaG(1/2) (")=470+/-20 cm(-1). These vibrational frequencies undoubtedly pertain to the Cr-C(2)H stretching mode. It is suggested that the spectrum corresponds to the A (6)Sigma(+)<--X (6)Sigma(+) band system, with the CrC(2)H molecule being linear in both the ground and the excited state. The related CrCH(3) molecule displays a vibronic spectrum in the 11 500-14 000 cm(-1) region. The upper state of this system displays six sub-bands that are too closely spaced to be vibrational structure, but too widely separated to be K structure. It is suggested that the observed spectrum is a (6)E<--X (6)A(1) band system, analogous to the well-known B (6)Pi<--X (6)Sigma(+) band systems of CrF and CrCl. The ground state Cr-CH(3) vibration is characterized by omega(e) (")=525+/-17 cm(-1) and omega(e) (")x(e) (")=7.9+/-6 cm(-1). The spectrum of NiCH(3) lies in the 16 100-17 400 cm(-1) range and has omega(e) (')=455.3+/-0.1 cm(-1) and omega(e) (')x(e) (')=6.60+/-0.03 cm(-1). Dispersed fluorescence studies provide ground state vibrational constants of omega(e) (")=565.8+/-1.6 cm(-1) and omega(e) (")x(e) (")=1.7+/-3.0 cm(-1). Again, these values correspond to the Ni-CH(3) stretching motion. (c) 2004 American Institute of Physics.  相似文献   

18.
Photomovement of the Gliding Cyanobacterium Synechocystis sp. PCC 6803   总被引:3,自引:0,他引:3  
Abstract— Using a computerized videomicroscope motion analysis system, we investigated the photomovements of two Synechocystis sp. (PCC 6803 and ATCC 27184). Synechocystis sp. PCC 6803 displays a relatively slow gliding motion. The phototactic and photokinetic speeds of this cyanobacterium in liquid media were 5μm/min and 15.8 μm/min, respectively, at 3μmol/m2/s of stimulant white light. Synechocystis sp. PCC 6803 senses light direction rather than intensity for phototaxis. Synechocystis sp. ATCC 27184 showed a weak photokinesis but no phototaxis. Analysis of Synechocystis sp. ATCC 27184 suggests that the loss of phototaxis results from spontaneous mutation during several years of subculture. When directional irradiation was applied, the cell population of Synechocystis sp. PCC 6803 began to deviate from random movement and reached maximum orientation at 5 min after the onset of stimulant white light. Synechocystis sp. PCC 6803 showed high sensitivity to the stimulant white light of fluence rates as low as 0.002 |unol/m2/s. Neither 1,3-dichlorophenyldimethyl urea nor cyanide affected phototactic orientation, whereas cyanide inhibited gUding speed. This result suggests that the phototaxis of Synechocystis sp. PCC 6803 is independent of photosynthetic phosphorylation and that its gliding movement is primarily powered by oxidative phosphorylation. In the visible wavelength region, 560 nm, 660 nm and even 760 nm caused positive phototaxis. However, 360 nm light induced strikingly negative phototaxis. Therefore, at least two independent photoreceptors may exist to control phototaxis. The photoreceptor for positive phototaxis appears likely to be a phytochrome-like tetrapyrrole rather than chlorophyll a .  相似文献   

19.
Optical pump-induced dynamics of the highly asymmetric carotenoid peridinin in methanol was studied by dispersed pump-probe, pump-dump-probe, and pump-repump-probe transient absorption spectroscopy in the visible region. Dispersed pump-probe measurements show that the decay of the initially excited S2 state populates two excited states, the S1 and the intramolecular charge-transfer (ICT) state, at a ratio determined by the excitation wavelength. The ensuing spectral evolution occurs on the time scale of a few picoseconds and suggests the equilibration of these states. Dumping the stimulated emission of the ICT state with an additional 800-nm pulse after 400- and 530-nm excitation preferentially removes the ICT state contribution from the broad excited-state absorption, allowing for its spectral characterization. At the same time, an unrelaxed ground-state species, which has a subpicosecond lifetime, is populated. The application of the 800-nm pulse at early times, when the S2 state is still populated, led to direct generation of the peridinin cation, observed for the first time in a transient absorption experiment. The excited and ground electronic states manifold of peridinin has been reconstructed using target analysis; this approach combined with the measured multipulse spectroscopic data allows us to estimate the spectra and time scales of the corresponding transient states.  相似文献   

20.
We studied the vibrational dynamics of the OH-stretch oscillators of an alcohol with two vicinal OH groups using femtosecond midinfrared pump-probe spectroscopy. The absorption spectrum of pinacol (2,3-dimethyl-2,3-butanediol) in CDCl3 shows two OH-stretch peaks belonging to hydrogen bonded and free OH groups. The anharmonicities of the hydrogen-bonded and free OH-stretch vibrations are 180 and 160 cm(-1), respectively. The lifetime T1 of the OH-stretch vibration is found to be 3.5 +/- 0.4 ps for the hydrogen bonded and 7.4 +/- 0.5 ps for the free OH group. We observed sidebands in the transient spectra after excitation of the bonded OH group, which we attribute to a progression in a low-frequency hydrogen-bond mode. The sideband is redshifted 60 cm(-1) with respect to the 0 --> 1 transition. Due to the coupling between the two OH groups and the presence of the sidebands, simultaneous excitation of both OH-stretch vibrations leads to oscillations on the pump-probe signal with frequencies of 40 and 60 cm(-1).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号