共查询到20条相似文献,搜索用时 15 毫秒
1.
Uekawa N Kajiwara J Kakegawa K Sasaki Y 《Journal of colloid and interface science》2002,250(2):285-290
An ethanol solution of Ti-peroxy compounds was prepared from the ethanol solution of titanium isopropoxide (Ti(O-iPr)4) and H2O2. Heating of the ethanol solution of the Ti-peroxy compounds at 348 K formed a Ti-peroxy gel, and heat treatment of the gel at 348 K for more than 6 h formed gels that consisted of anatase nanoparticles. The diameter of the anatase nanoparticles increased from 9 to 15 nm as the heating time increased from 6 to 48 h. According to the results of the N2 adsorption measurement, the anatase nanoparticles had micropores, and the specific surface area (SBET) was in the range of 254 to 438 m2/g. The particle size, lattice strain, specific surface area, and photocatalytic activity of the anatase nanoparticles can be regulated by the heating time of the Ti-peroxy gel at 348 K. 相似文献
2.
Anatase TiO2 nanoparticles with a size range of 2 to 10 nm have been formed on carbon nanotubes by the controlled hydrolysis and condensation of titanium bis-ammonium lactato dihydroxide in water and electrosterically dispersed carbon nanotubes. 相似文献
3.
TiO2 nanoparticle-coated granular activated carbon (GAC) composite photocatalysts (CPs) were successfully prepared by a molecular adsorption-deposition (MAD) method. The CPs were detected by scanning electron microscopy (SEM), X-ray diffraction (XRD), X-ray Photoelectron Spectroscopy (XPS), BET surface area and UV-Vis adsorption spectroscopy, and their photoactivity was evaluated by methyl orange (MO) photodegradation. The results show that small-sized TiO2 nanoparticles were dispersed well, deposited on the surface of GAC, and showed slight blue shift in comparison with pure TiO2. With the increase in TiO2 content, the CPs showed band gaps in lower energy, smaller surface areas and the higher content of Ti3+ ions. Compared with pure TiO2 and others CPs samples, CPs-382 sample showed the highest photoactivity due to the optimum TiO2 content and surface area besides the synergic effect of photocatalytic degradation of TiO2 and adsorptive property of GAC. In addition, the CPs could be very easily reclaimed, recycled and reused for methyl orange removal while high photoactivity is preserved. 相似文献
4.
We report the use of Li(Ni0.8Co0.2)O2 coated with different amounts of anatase (TiO2) as a cathode material for lithium-ion cells. Electrochemical behavior is modified owing to coating and/or incorporation
of titanium into the first few surface layers of Li(Ni0.8Co0.2)O2. Compositions with molar concentrations of x=0.005 and 0.02 exhibit better capacity retention than the mother compound (40 cycles, 0.5 C rate, 2.75–4.30 V).
Electronic Publication 相似文献
5.
Nanoscale anatase TiO2 single crystals were successfully synthesized using three kinds of activated carbon (AC) templates through a simple sol–gel method. The optimal photocatalyst (T‐WOAC) was obtained using wood‐based AC template. X‐ray diffraction, transmission electron microscopy and Brunauer–Emmett–Teller analyses revealed that T‐WOAC possessed a small crystallite size of 8.7 nm and a clear mesoporous structure. The photocatalytic properties of samples were then evaluated through photodegradation of crystal violet (CV). Results implied that the photocatalysts prepared using the AC templates exhibited superior photocatalytic activity to that of the original TiO2. This enhancement may be due to the small crystallite size, large specific surface area and pore volume of the catalysts prepared with ACs. T‐WOAC showed high photocatalytic activity, CV degradation of 99.01% after 120 min of irradiation and k = 0.03914 min?1, which is 3.9 times higher than that of the original TiO2 (k = 0.00994 min?1). This result can be mainly attributed to the application of WOAC with moderate specific surface area and pore volume to produce T‐WOAC. Alkaline conditions benefitted the photodegradation of CV over photocatalysts. This work proposes a possible degradation mechanism of CV and indicates that the fabricated photocatalysts can be used to effectively remove CV from aqueous solutions. 相似文献
6.
Lele Zhao Shouxin Wang Yuanyang Wang Zhihong Li 《Surface and interface analysis : SIA》2017,49(3):173-176
Titanium dioxide (TiO2) aerogels were prepared with sol–gel ambient pressure drying method by using titanium tetrachloride (TiCl4) as precursor and tetraethoxysilane as modifier, calcinated at different temperature and characterized by X‐ray diffraction, transmission electron microscopy and small angle X‐ray scattering. The results showed that the TiO2 aerogels remained amorphous under 500 °C, changed to anatase from 600 °C and further changed to rutile from 900 °C. Between 60 °C and 500 °C, the primary particles within the samples concentrated mainly upon small sizes, enlarged and diverged remarkably above 600 °C. The crystalline grains grew and agglomerated with the rise of the calcination temperature. The TiO2 aerogels at a temperature higher than 800 °C have better stability than anatase because of the formation of partial Ti―O―Si bonds. Copyright © 2016 John Wiley & Sons, Ltd. 相似文献
7.
Facile preparation of micro-mesoporous carbon-doped TiO2 photocatalysts with anatase crystalline walls under template-free condition 总被引:2,自引:0,他引:2
A new low-temperature procedure has been used for preparing micro-mesoporous carbon-doped TiO2 photocatalysts, with anatase pore wall and substitutional carbon occupying oxygen sites, which exhibit outstanding photocatalytic activity under visible light irradiation. 相似文献
8.
Photocatalytic degradation of phenolic syntan using TiO2 impregnated activated carbon 总被引:1,自引:0,他引:1
Aruldoss U Kennedy LJ Vijaya JJ Sekaran G 《Journal of colloid and interface science》2011,355(1):204-209
Investigations were carried out to study the photocatalytic degradation of phenolic syntan (PS), a widely used environmentally polluting chemical in the leather tanning industry. Photocatalytic inactive commercial TiO(2) was used as the precursor for the preparation of TiO(2) impregnated activated carbon (Ti-AC) photocatalyst. Experiments were conducted by varying the concentrations of PS solution (50-1000 mg/l), pH (2.5-10) and time intervals to optimize the working parameters. A 254 nm UV light was used throughout the study. The effect of PS degradation using Ti-AC was also compared with direct UV photolysis. The Ti-AC was characterized using X-ray Diffraction (XRD), Diffuse Reflectance Spectroscopy (DRS), Scanning Electron Microscopy (SEM) and energy dispersive X-ray analysis (EDX) to determine the structural, optical, surface morphology and elemental analysis respectively. X-ray studies revealed the formation of catalytically active anatase phase in Ti-AC. Photodegradation of PS was examined by chemical oxygen demand (COD) method. PS degradation occurred at both the extreme end of acidic and alkaline pH conditions. However, the percentage degradation was comparatively higher at pH 2.5. The photodegradation followed pseudo first order kinetics. UV-Visible studies substantiated the occurrence of bathochromic and hyperchromic effects as a result of ring opening in the PS molecule. 相似文献
9.
10.
Abazović ND Comor MI Dramićanin MD Jovanović DJ Ahrenkiel SP Nedeljković JM 《The journal of physical chemistry. B》2006,110(50):25366-25370
Nonaqueous reactions between titanium(IV) chloride and alcohols (benzyl alcohol or n-butanol) were used for the synthesis of anatase TiO2 particles, while rutile TiO2 particles were synthesized in aqueous media by acidic hydrolysis of titanium(IV) chloride. The X-ray diffraction measurements proved the exclusive presence of either the anatase or the rutile phase in prepared samples. The photoluminescence of both kinds of particles (anatase and rutile) with several well-resolved peaks extending in the visible spectral region was observed, and the quantum yield at room temperature was found to be 0.25%. Photon energy up-conversion from colloidal anatase and rutile TiO2 particles was observed at low excitation intensities. The energy of up-converted photoluminescence spans the range of emission of normal photoluminescence. The explanation of photon energy up-conversion involves mid-gap energy levels originating from oxygen vacancies. 相似文献
11.
Berger T Sterrer M Diwald O Knözinger E Panayotov D Thompson TL Yates JT 《The journal of physical chemistry. B》2005,109(13):6061-6068
Ultraviolet light-induced electron-hole pair excitations in anatase TiO(2) powders were studied by a combination of electron paramagnetic resonance and infrared spectroscopy measurements. During continuous UV irradiation in the mW.cm(-2) range, photogenerated electrons are either trapped at localized sites, giving paramagnetic Ti(3+) centers, or remain in the conduction band as EPR silent species which may be observed by their IR absorption. Using low temperatures (90 K) to reduce the rate of the electron-hole recombination processes, trapped electrons and conduction band electrons exhibit lifetimes of hours. The EPR-detected holes produced by photoexcitation are O(-) species, produced from lattice O(2-) ions. It is found that under high vacuum conditions, the major fraction of photoexcited electrons remains in the conduction band. At 298 K, all stable hole and electron states are lost from TiO(2). Defect sites produced by oxygen removal during annealing of anatase TiO(2) are found to produce a Ti(3+) EPR spectrum identical to that of trapped electrons, which originate from photoexcitation of oxidized TiO(2). Efficient electron scavenging by adsorbed O(2) at 140 K is found to produce two long-lived O(2)(-) surface species associated with different cation surface sites. Reduced TiO(2), produced by annealing in vacuum, has been shown to be less efficient in hole trapping than oxidized TiO(2). 相似文献
12.
Lucia Cavigli Franco Bogani Anna Vinattieri Lorenzo Cortese Marcello Colocci Valentina Faso Giovanni Baldi 《Solid State Sciences》2010,12(11):1877-1880
We present an experimental study of the radiative recombination dynamics in size-controlled TiO2 nanoparticles in the range 20–130 nm. Time-integrated photoluminescence spectra clearly show a dominance of self-trapped exciton (STE) emission, with main features not dependent on the nanoparticle size and on its environment. From picosecond time-resolved experiments as a function of the excitation density and the nanoparticle size we address the STE recombination dynamics as the result of two main processes related to the direct STE formation and to the indirect STE formation mediated by non-radiative surface states. 相似文献
13.
Photocatalysis effect of nanometer TiO2 and TiO2-coated ceramic plate on Hepatitis B virus 总被引:2,自引:0,他引:2
Zan L Fa W Peng T Gong ZK 《Journal of photochemistry and photobiology. B, Biology》2007,86(2):165-169
The photocatalysis effect of nanometer TiO2 particles and TiO2-coated ceramic plate on Hepatitis B virus surface antigen (HBsAg) was investigated. The ELISA (enzyme-linked immunosorbent assay) standard method was used to assess the efficiency of TiO2 material to destroy the HBsAg. The research has shown that the suspension of TiO2 (0.5g/L) can destroy most of the HBsAg under the irradiation of mercury lamp, with the light intensity of 0.6mW/cm(2) at 365nm wavelength, or under the sunlight irradiation for a few hours. TiO2-coated ceramic plates can also destroy the HBsAg under the irradiation of mercury lamp, with the light intensity of 0.05mW/cm(2) at 365nm wavelength or under the room daylight for a few hours. 相似文献
14.
《Journal of Saudi Chemical Society》2021,25(12):101383
Anatase TiO2/nanocellulose composite was prepared for the first time via a one-step method at a relatively low temperature by using cellulose nanofibers as carrier and tetrabutyl titanate as titanium precursor. The morphology, structure and element composition of the composite were characterized by SEM, EDS, TEM, XRD, XPS and UV–vis DRS. The specific surface area and thermal stability of the composite were investigated by N2 adsorption–desorption and thermogravimetric analysis, respectively, and the band gaps of the prepared photocatalysts were calculated based on the UV–vis DRS results. In addition, the prepared composite was used for the photocatalytic degradation of methyl orange (aqueous solution, 40 mg L−1). It was found that the composite had a good morphology and anatase crystal structure, and Ti-O-C bond was formed between TiO2 and nanocellulose. The specific surface area of composite was increased and the thermal stability was decreased compared with the cellulose nanofiber. Moreover, the degradation rate of methyl orange was achieved as 99.72% within 30 min, and no obvious activity loss was observed after five cycles. This work might give some insights into the design of efficient photocatalysts for the treatment of organic dye wastewater. 相似文献
15.
Improving the performance of mostly employed anatase TiO2 photocatalysts by properly controlling their crystal shape represents a big challenge to improve their efficiency in photocatalytic applications. After the synthesis, reported in 2008, of anatase microcrystals enriched in high-energy {001} facets, many efforts have been made aimed at tuning the crystal morphology of anatase, by means of either fluorine-mediated or more environmentally friendly methods, producing a deviation from its regular crystal growth. In this relatively new field of investigation, controversial opinions emerged concerning the role of each type of facet and its relative amount in relation to photoefficiency optimization. This review addresses this topic by presenting a critical survey of selected literature reports. After a brief introduction on the main synthetic strategies adopted to obtain shape-controlled anatase photocatalysts, the attention is focused on the methods employed for their comprehensive characterization, including the identification and quantification of exposed facets and the assessment of their influence on bulk and surface properties relevant to photoactivity. Potential interferences, derived from synthetic routes and possibly affecting the conclusions of facet-dependent photoactivity investigations, are also discussed. Key examples of test reactions actually demonstrating how both the type and/or the amount of specific facets influence photocatalytic activity are finally reported, aiming at providing rational bases for the design of better performing shape-controlled anatase photocatalysts. 相似文献
16.
High-purity anatase TiO(2) nanoparticles were prepared using a low-temperature sol-gel route. The as-prepared sample was characterized by X-ray diffraction, transmission electron microscopy, infrared spectroscopy, thermogravimetric analysis, UV-vis spectroscopy, and photoluminescence. It is shown that the as-prepared sample crystallized in a pure anatase phase with an average crystallite size of about 7 nm, and the surfaces were highly hydrated. These nanoparticles were stabilized as a water suspension via the cooperation of DLVO force and surface hydration force. These suspensions showed characteristic band-gap emission at 397+/-1.5 nm, which is a little red-shifted compared with the band-gap energy of indirect electronic transition measured in the UV-vis absorption spectrum. These observations were explained by the light-induced relaxation of polar water molecules in the surface hydration layer. 相似文献
17.
《中国科学B辑(英文版)》2008,(11)
TiO2 nanoparticle-coated granular activated carbon (GAC) composite photocatalysts (CPs) were suc-cessfully prepared by a molecular adsorption-deposition (MAD) method. The CPs were detected by scanning electron microscopy (SEM), X-ray diffraction (XRD), X-ray Photoelectron Spectroscopy (XPS), BET surface area and UV-Vis adsorption spectroscopy, and their photoactivity was evaluated by methyl orange (MO) photodegradation. The results show that small-sized TiO2 nanoparticles were dispersed well, deposited on the surface of GAC, and showed slight blue shift in comparison with pure TiO2. With the increase in TiO2 content, the CPs showed band gaps in lower energy, smaller surface areas and the higher content of Ti3 ions. Compared with pure TiO2 and others CPs samples, CPs-382 sample showed the highest photoactivity due to the optimum TiO2 content and surface area besides the synergic effect of photocatalytic degradation of TiO2 and adsorptive property of GAC. In addition, the CPs could be very easily reclaimed, recycled and reused for methyl orange removal while high photoactivity is pre-served. 相似文献
18.
The interaction of organic molecules with titanium dioxide surfaces has been the subject of many studies over the last few decades. Numerous surface science techniques have been utilised to understand the often complex nature of these systems. The reasons for studying these systems are hugely diverse given that titanium dioxide has many technological and medical applications. Although surface science experiments investigating the adsorption of organic molecules on titanium dioxide surfaces is not a new area of research, the field continues to change and evolve as new potential applications are discovered and new techniques to study the systems are developed. This tutorial review aims to update previous reviews on the subject. It describes experimental and theoretical work on the adsorption of carboxylic acids, dye molecules, amino acids, alcohols, catechols and nitrogen containing compounds on single crystal TiO(2) surfaces. 相似文献
19.
Ding S Chen JS Luan D Boey FY Madhavi S Lou XW 《Chemical communications (Cambridge, England)》2011,47(20):5780-5782
We have designed a unique hybrid structure by directly growing ultrathin anatase TiO(2) nanosheets onto graphene support for fast lithium storage. With exposed (001) high-energy facets, these TiO(2) nanosheets serve as ideal hosts for fast and efficient lithium storage. On the other hand, the graphene support serves as a highly conductive substrate that is beneficial to the high-rate performance. 相似文献
20.
In Chan Baek Muga Vithal Jeong Ah Chang Jun-Ho Yum Md.K. Nazeeruddin Michael Grätzel Yong-Chae Chung Sang Il Seok 《Electrochemistry communications》2009,11(4):909-912
A simple one-step heat-treatment of peroxotitanate complex aqueous solution at around 100 °C was resulted in the formation of ellipsoidal anatase TiO2 nanoparticles having a high aspect ratio with no branches. The length of these ellipsoidal TiO2 falls in the range of 200–350 nm, depending on mole ratio of Ti4+/H2O2. Dye-sensitized solar cell based on these ellipsoidal nanocrystalline TiO2 as photoanode was fabricated and characterized. 相似文献