首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In the methyl methacrylate (MMA)-K2S2O8-H2O system we investigated the effect of initiator concentration, monomer amount, and quantity of aluminosiloxane sol on the rate of soapless emulsion polymerization. The kinetic characteristic suggests that the particles grow in accordance with the encapsulation mechanism. FT-IR confirmed that PMMA had been covalently combined with the aluminosiloxane sol. The morphology analysis by TEM confirmed that the composite particles have core-shell structure.  相似文献   

2.
Polymer particle formation in soapless emulsion polymerization for monomers that are soluble in diluent is studied theoretically and experimentally. A kinetic model is proposed assuming that polymer particles are formed by homogeneous nucleation of both growing radicals and dead polymer molecules above the critical size in solution. Based on this model, the dependence of the number of polymer particles on the concentration of initiator and monomer in solution is discussed for the polymerization system of methyl methacrylate–potassium persulfate–water. Experimental results of the number of polymer particles in this system can reasonably be interpreted by this model.  相似文献   

3.
Al(OH)3/PMMA nanocomposites were prepared by the emulsion polymerization of methyl methacrylate (MMA) in the presence of surface‐functionalized Al(OH)3 particles. Nanosized Al(OH)3 particles were previously functionalized with a silane coupling agent, 3‐(trimethoxysilyl) propyl methacrylate (γ‐MPS), which was confirmed by FT‐IR and XRF analysis. The average size of seed particles was around 70 nm, and the density of the coupling agent on the particles was calculated to be 8.9 µmol m?2. The emulsion polymerization was attempted at relatively high solid content of 40–46 wt%. The ratio of the seed particles to MMA had a strong influence on the stability of latex as well as the morphology of composites. Nanocomposites where several PMMA nodules were attached on the surface of Al(OH)3 core were produced with stable latex emulsion when the weight percents of Al(OH)3 to MMA were below 20. In the case of higher ratio of 30%, however, the latexes became unstable with an aggregation, and the product morphology was in the shape of large composite. Thermogravimetric analysis showed an improved thermal stability of PMMA composites with the incorporation of Al(OH)3 nanoparticles. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

4.
 Composite polymer particles which contain poly(methyl methacrylate) (PMMA) and polystyrene (PS) components (PMMA/PS composite particle) were synthesized by the method of multistage soapless seeded emulsion polymerization. In this study, the process of multistage soapless seeded emulsion polymerization included two-stage polymerization, three-stage polymerization or four-stage polymerization. The morphologies of the PMMA/PS composite particles were studied. The kinetic factor was the main force to control the morphology of the linear PMMA–PS composite particles which were synthesized by the method of two-stage reaction. Both the kinetic factor and the thermodynamic factor decide the morphology of the linear composite particles which were synthesized by the method of either three-stage or four-stage reaction. However, the thermodynamic factor cannot influence the morphology of the PMMA/PS composite particles with a cross-linked structure which were synthesized by the method of three-stage reaction. The cross-linked composite polymer particles had the morphology of a multilayer structure, which showed that the polymer layers accumulated in their order of production. Received: 9 January 2001 Accepted: 14 June 2001  相似文献   

5.
The rate of soapless emulsion polymerization is studied experimentally and theoretically. The soapless emulsion polymerization of methyl methacrylate (MMA) in water is carried out with potassium persulfate as initiator. It is shown that the soapless emulsion polymerization of MMA gives different time-conversion and time-average molecular weight curves from those of bulk and emulsion polymerizations. Comparing the experimental results with those of the other types of polymerization, features of the rate of soapless emulsion polymerization are discussed and a kinetic model is proposed to apply the soapless emulsion polymerization of MMA in water. The experimental results can be well expressed by this model.  相似文献   

6.
The encapsulation of inorganic powder of submicron sizes was attempted with soapless emulsion polymerization of methyl methacrylate in water in the presence of the powder. The powders used were barium sulfate and calcium carbonate. The polymerizations were initiated by potassium persulfate and by sodium bisulfite-oxygen redox reaction. The encapsulation state of the powder with the polymer formed varied considerably with the initiators used. With potassium persulfate initiator the powder surface was partially or totally covered by polymer particles, while with redox initiator under air atmosphere the powder surface was well encapsulated with a film-like polymer layer. From the differences in the encapsulation states, an encapsulation mechanism is suggested for each initiator system. Based upon this mechanism, a new encapsulation process capable of covering uniformly fine powders with a film polymer is proposed. An important factor in the new process is the addition of an extremely small quantity of a surfactant into the reaction system prior to the polymerization.  相似文献   

7.
Graphene oxide (GO) is used as a stabilizer in the Pickering emulsion polymerization of methyl methacrylate (MMA) to prepare PMMA/GO nanocomposites. Transmission electron microscope studies of the emulsion polymerization products showed that the average diameter of nanocomposite particles was about 150 nm, the transparent GO flakes covered the surface of the particles, and were well dispersed in polymer matrix. The influence of GO on the thermal stability of PMMA was investigated by thermogravimetry analysis and differential scanning calorimetry. The results showed that the thermal stability and the glass transition temperature (T g) of PMMA/GO nanocomposites were improved obviously compared with PMMA. The apparent activation energy (E a) for the degradation process of PMMA/GO nanocomposites was evaluated by Kissinger method, which indicated that their E a s were much higher than those of PMMA both in nitrogen and air atmosphere.  相似文献   

8.
Soap‐free emulsion polymerization of methyl methacrylate (MMA) in the aqueous suspension of montmorillonite (MMT) was able to fabricate the exfoliated MMT/PMMA nanocomposite latex. Because neither MMA nor substantial quantity of potassium persulfide (KPS) initiator could be individually absorbed into the interlayer region of MMT, the polymerizing ionic radicals in water phase were considered as a major component to diffuse into the gallery of MMT. They have been observed to organize into disk‐like micelles in the interlayer regions to exfoliate MMT. The diffusion of the polymerizing ionic radicals was further supported by using sodium dodecyl sulfate (SDS) surfactant as a model compound to diffuse into the gallery of MMT. The exfoliation of MMT was almost completed before micellization stage was over. After exfoliation, the disk‐like micelles became a polymerization loci for monomers. Because the disk‐like micelles in numbers were substantially over the commonly formed spherical micelles in the typical soap‐free emulsion polymerization, the conversion rate of MMA to MMT/PMMA nanocomposite latex was faster. Based on the above experimental observation, a justified exfoliation mechanism of MMT was proposed. © 2008 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 47: 459–466, 2009  相似文献   

9.
10.
The efficient synthesis of all-acrylic, film-forming, core-shell colloidal nanocomposite particles via in situ aqueous emulsion copolymerization of methyl methacrylate with n-butyl acrylate in the presence of a glycerol-functionalized ultrafine silica sol using a cationic azo initiator at 60 °C is reported. It is shown that relatively monodisperse nanocomposite particles can be produced with typical mean weight-average diameters of 140-330 nm and silica contents of up to 39 wt %. The importance of surface functionalization of the silica sol is highlighted, and it is demonstrated that systematic variation of parameters such as the initial silica sol concentration and initiator concentration affect both the mean particle diameter and the silica aggregation efficiency. The nanocomposite morphology comprises a copolymer core and a particulate silica shell, as determined by aqueous electrophoresis, X-ray photoelectron spectroscopy, and electron microscopy. Moreover, it is shown that films cast from n-butyl acrylate-rich copolymer/silica nanocomposite dispersions are significantly more transparent than those prepared from the poly(styrene-co-n-butyl acrylate)/silica nanocomposite particles reported previously. In the case of the aqueous emulsion homopolymerization of methyl methacrylate in the presence of ultrafine silica, a particle formation mechanism is proposed to account for the various experimental observations made when periodically sampling such nanocomposite syntheses at intermediate comonomer conversions.  相似文献   

11.
The encapsulation of fine inorganic powder was carried out with the soapless emulsion polymerization of methyl methacrylate in water in the presence of the powder, a layer of surfactant being adsorbed. The powder used was titanium dioxide. Surfactants added prior to the polymerization were sodium dodecyl sulfate, dodecyltrimethyl ammonium bromide, and polyoxyethylene sorbitan mono-oleate. The encapsulation state of the powder with polymer was closely related to the amount of surfactant adsorbed on the powder; and an amount of adsorption above a certain value was necessary for uniform encapsulation. Ionic surfactants were more useful than nonionic in the surfactants used, and could be adsorbed utilizing the electrostatic interaction between powder and the ionic end group. The combination of electric charges between the ionic end groups of surfactant and initiator was found to influence the molecular weight of capsulating polymer.  相似文献   

12.
In order to identify the factors causing an agitation effect on the rate of soapless emulsion polymerization, the polymerization of methyl methacrylate was carried out in water. Experimental results indicated the significance of monomer transfer from monomer droplets to water. A kinetic model was proposed which would take into account this monomer transfer. This model enabled the effect of monomer transfer on the rate of soapless emulsion polymerization to be evaluated for the present system and the experimental results to be interpreted qualitatively.  相似文献   

13.
A series of SiO2/PMMA composite particles with different morphologies were prepared by conventional emulsion polymerization by the aid of acid–base interaction between the silanol groups of unmodified silica particles and the amino groups of 4‐vinylpyridine. In this approach, no surface treatment for nanosilica particles was required. The morphologies of composite particles, for example, multicore–shell, raspberry‐like, and conventional core–shell, could be controlled by modulating emulsifier content, monomer/silica ratio, silica size, and monomer feed method. The possible particle formation mechanisms were discussed. © 2006 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 44: 3807–3816, 2006  相似文献   

14.
A novel method to prepare organic/inorganic composite particles, i.e. poly(methyl methacrylate)/CaCO3/SiO2 three-component composite particles, using emulsion polymerization of methyl methacrylate with sodium lauryl sulfate as a surfactant in an aqueous medium was reported. CaCO3/SiO2 two-component inorganic composite particles were obtained firstly by the reaction between Na2CO3 and CaCl2 in porous silica (submicrometer size) aqueous sol and the specific surface area of the particles was measured by the Brunauer–Emmett–Teller (BET) method. The results show that the BET specific surface area of the CaCO3/SiO2 composite particle is much smaller than that of the silica particle, indicating that CaCO3 particles were adsorbed by porous silica and that two-component inorganic composite particles were formed. Before copolymerization with methyl methacrylate, the inorganic composite particles were coated with a modifying agent through covalent attachment. The chemical structures of the poly(methyl methacrylate)/CaCO3/SiO2 composite particles obtained were characterized by Fourier transform IR spectroscopy and thermogravimetric analysis. The results show that the surface of the modified inorganic particles is grafted by the methyl methacrylate molecules and that the grafting percentage is about 15.2%.  相似文献   

15.
The aqueous emulsifier-free emulsion polymerization of methyl methacrylate (MMA) was studied under the catalytic effect of in situ developed bivalent transition metal-EDTA complex with ammonium persulfate (APS, (NH4)2S2O8) as initiator. Out of these, Cu(II)-EDTA system was selected for detailed kinetic and spectrometric study of polymerization. The apparent activation energy Ea, 34.5 kJ/mol, activation energy of initiator decomposition Ed, 26.9 kJ/mol, energy of propagation Ep, 29 kJ/mol and energy of termination Et, 16 kJ/mol were reported. The emulsion polymer (PMMA) latex was characterized through the determination of the size and morphology by scanning electron microscopy, the average molecular weight by GPC and viscosity methods and the sound velocity by ultrasonic interferometer. From the kinetic results, the rate of polymerization, Rp at 50 °C was expressed by
  相似文献   

16.
A novel and facile approach to the preparation of paramagnetic magnetite/polystyrene nanocomposite microspheres by 60Co gamma-ray radiation-induced miniemulsion polymerization is reported. First, we modified the magnetite nanoparticles (MPs) with a Y-shaped surfactant: 12-hexanoyloxy-9-octadecenoic acid (HOA). Nanocomposite microspheres consisting of polystyrene-iron oxide nanoparticles then were prepared by the radiation-induced miniemulsion polymerization of styrene in the presence of HOA-modified MPs using HOA as stabilizer. The final products were characterized by X-ray powder diffraction (XRD), Fourier transform infrared spectroscopy (FT-IR), field-emission scanning electron microscopy (FESEM), thermogravimetric analysis (TGA), and X-ray photoelectron spectroscopy (XPS). The effects of the dose rate, the amounts of added hexadecane (HD) and MPs, and the morphology of the final products were studied. We have also studied the polymerization kinetics to prove the miniemulsion polymerization mechanism of the nanocomposite microspheres.  相似文献   

17.
Poly(styrene-co-methacrylic acid) (PS-co-MAA) particles were synthesized via surfactant-free emulsion polymerization and then used as particulate emulsifiers for preparation of Pickering emulsions. Our results showed that adjusting the solution pH can tune the wettability of PS-co-MAA particles to stabilize either water-in-oil (W/O) or oil-in-water (O/W) Pickering emulsions. Stable W/O emulsions were obtained with PS-co-MAA particles at low pH values due to their better affinity to the dispersed oil phase. In contrast, increasing the pH value significantly changed the stabilizing behavior of the PS-co-MAA particles, leading to the phase inversion and formation of stable O/W emulsions. We found that the oil/water ratio had a significant influence on pH value of the phase inversion. It decreased with decreasing the oil/water ratio, and no phase inversion occurred when the styrene volume fraction reduced to 10 %. Additionally, macroporous polystyrene (PS) foam and PS microspheres were obtained via polymerization of Pickering high internal phase emulsion (Pickering HIPE) and O/W Pickering emulsion, respectively.  相似文献   

18.
For high performance waterborne coatings usually polymer latexes with low emulsifier content are more preferred. Although polymer/clay nanocomposites offer improved properties, it is difficult to produce clay based nanocomposite latexes containing low emulsifier due to the stabilization problems especially caused by organoclays. Present study deals with the preparation of a tBA/BA/MAA ternary copolymer/clay nanocomposite containing 3 wt.% sodium montmorillonite (Na+-MMT) via seeded emulsion polymerization. Experimentally it was observed that even the usage of hydrophilic clay caused stabilization problem and a certain amount of emulsifier (>1 wt.%) was necessary to obtain stable latexes. In addition, the usage of a low molecular weight water soluble polymer as steric barrier was found to increase the stability of system. Obtained nanocomposite latex showed fine particle size diameter (127 nm) and very narrow size distribution (PDI = 0.06). The WAXD and TEM investigations indicated that a mostly exfoliated nanocomposite was obtained. Thermal analyses (DSC, DMTA and TGA) showed that there was no change at Tg of the copolymer while very high improvement was obtained for elastic modulus and a slight increase in thermal stability. According to the rheological measurements, the nanocomposite latex showed a higher low shear viscosity, a stronger shear thinning behavior and an improved physical stability in comparison to the reference latex.  相似文献   

19.
Nanosized Ag particles were entrapped successfully in multihollow porous poly(methyl methacrylate) (PMMA) microspheres by water-in-oil-in-water emulsion polymerization. The structure of the PMMA/Ag microspheres prepared was characterized by scanning electron microscopy and X-ray powder diffraction analysis. It was found that the Ag nanoparticles were impregnated in the inner voids of the microspheres and they had a face-centered cubic structure. In the preservation test, the PMMA/Ag microspheres showed a powerful antibacterial performance, indicating that the Ag ions released effectively through the nanosized pore channel of the PMMA wall.  相似文献   

20.
聚丙烯/PMMA/CaCO3纳米复合材料的制备、结构与力学性能   总被引:9,自引:0,他引:9  
王平华  严满清 《应用化学》2003,20(11):1066-0
分别将经不同表面处理的纳米碳酸钙粒子与聚合物PP共混,制备PP/CaCO3和PP/PMMA/CaCO3纳米复合材料。用TEM观察了表面处理后纳米粒子的粒径与分散情况,发现复合粒子分散较均匀。用DSC与WAXD研究了复合材料的结晶行为,发现原位聚合制备的PMMA/CaCO3纳米复合粒子与PP共混后,PP有异相成核作用,出现了不稳定的PPβ晶型。PP/PMMA/CaCO3纳米复合材料力学性能有大幅度的提高。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号