首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
The attempt to prepare structurally well-defined polymer/inorganic composite particles, i.e., poly(methyl methacrylate) (PMMA)/CaCO3/SiO2 three-component composite particles, via reverse atom transfer radical polymerization (ATRP), using 2-2′-azo-bis-isobutyronitrile as initiator and Cu(II) bromide as catalyst was reported. CaCO3/SiO2 two-component composite particles were first obtained through sol–gel method, and their morphology and surface element information were determined by transmission electron microscopy and X-ray photoelectron spectroscopy, respectively. The results indicate that the CaCO3 was encapsulated by the obtained SiO2. After being modified by silane coupling agent, the CaCO3/SiO2 composite particles copolymerized with methyl methacrylate (MMA) under standard reverse ATRP conditions to produce PMMA/CaCO3/SiO2 three-component composite particles. In the case concerned, first-order kinetic plots and linear increase of molecular weight (Mn) vs conversion and narrow molecular weight distribution for the graft polymer samples were observed. Furthermore, the gel permeation chromatography results illustrated that both the free PMMA chains from the solvent and the graft PMMA chains from the surface of CaCO3/SiO2 two-component composite particles were growing at the same rate. Characterizations of the PMMA-grafted CaCO3/SiO2 composite particles were done by Fourier transform infrared and thermogravimetric analysis. The results showed that the surface of the modified inorganic particles was grafted by the MMA and that the grafting percentage was about 8.7%.  相似文献   

2.
Summary: We previously discovered that structurally well-defined polymer/inorganic composite particles, i.e., poly(methyl methacrylate) (PMMA)/CaCO3/SiO2 three-component composite particles, can be achieved via reverse atom transfer radical polymerization (ATRP), using 2,2′-azo-bis-isobutyronitrile as initiator and CuII bromide as catalyst. In the present study, the influence of the mass ratio of CaCO3/SiO2 two-component composite particles to methyl methacrylate (MMA) on the rate and behavior of the polymerization was studied in detail. The results illustrate that increasing the mass ratio of CaCO3/SiO2 two-component composite particles will decrease the overall rate of polymerization of MMA under standard reverse ATRP conditions. Thermal properties of the obtained well-defined particles were characterized and determined by thermogravimetric analysis (TGA). The results indicate that well-defined PMMA chains grafted on the surface of CaCO3/SiO2 particles were only degraded by random chain scission of C C linkages within the PMMA chain, which is different from the degradation of PMMA chains prepared via traditional radical polymerization. This difference is reasonably ascribed to the difference between the end groups of PMMA prepared via reverse ATRP and that via traditional radical polymerization, which has been confirmed by end group analysis measured by 1H–NMR spectroscopy.  相似文献   

3.
The influences of nanosized CaCO3 on the thermal and optical properties embedded in poly(methyl methacrylate) (PMMA) and polystyrene (PS) were investigated. Calcium carbonate nanoparticles were synthesized by in situ deposition technique, and its nano size (32–35 nm) was confirmed by scanning electron microscope (SEM) and X-ray studies. Nanocomposites samples of PMMA/CaCO3 and PS/CaCO3 were prepared with different filler loading (0–4 wt%) of CaCO3 nanoparticles by solution mixing technique. The Fourier transform infrared analysis confirmed that CaCO3 nanoparticles were present in the polymers matrices. The morphology and elemental composition of nanocomposites were evaluated by SEM and energy dispersive X-ray spectroscopy. The thermal properties of nanocomposites were characterized by differential scanning calorimetric, thermogravimetric, and differential thermogravimetry analysis, and the results indicate that the incorporation of CaCO3 nanoparticles could significantly improve the thermal properties of PMMA/CaCO3 and PS/CaCO3 nanocomposites. The glass transition temperature (T g ) and decomposition temperature (T d ) of nanocomposites with 4 wt% of CaCO3 nanoparticles were increased by 30 and 24 K in case of PMMA/CaCO3 and 32  and 15 K in the case of PS/CaCO3 nanocomposites, respectively. The obtained transparent nanocomposites films were characterized using UV–Vis spectrophotometer which shows the transparencies of nanocomposites are almost maintained in visible region while the intensity of absorption band in ultraviolet (UV) region is increased with CaCO3 nanoparticles contents and these composites particles could enhance the UV-shielding properties of polymers.  相似文献   

4.
A novel method to prepare organic/inorganic composite particles, i.e. poly(methyl methacrylate)/CaCO3/SiO2 three-component composite particles, using emulsion polymerization of methyl methacrylate with sodium lauryl sulfate as a surfactant in an aqueous medium was reported. CaCO3/SiO2 two-component inorganic composite particles were obtained firstly by the reaction between Na2CO3 and CaCl2 in porous silica (submicrometer size) aqueous sol and the specific surface area of the particles was measured by the Brunauer–Emmett–Teller (BET) method. The results show that the BET specific surface area of the CaCO3/SiO2 composite particle is much smaller than that of the silica particle, indicating that CaCO3 particles were adsorbed by porous silica and that two-component inorganic composite particles were formed. Before copolymerization with methyl methacrylate, the inorganic composite particles were coated with a modifying agent through covalent attachment. The chemical structures of the poly(methyl methacrylate)/CaCO3/SiO2 composite particles obtained were characterized by Fourier transform IR spectroscopy and thermogravimetric analysis. The results show that the surface of the modified inorganic particles is grafted by the methyl methacrylate molecules and that the grafting percentage is about 15.2%.  相似文献   

5.
PMMA based nanocomposites filled with calcium carbonate nanoparticles (CaCO3) have been prepared by in situ polymerization approach. In order to improve inorganic nanofillers/polymer compatibility, PBA chains have been grafted onto CaCO3 nanoparticle surface. Morphological analysis performed on nanocomposite fractured surfaces has revealed that the CaCO3 modification induces homogeneous and fine dispersion of nanoparticles into PMMA as well as strong interfacial adhesion between the two phases. Mechanical tests have shown that both unmodified and modified CaCO3 are responsible for an increase of the Young's Modulus, whereas only PBA-grafted nanoparticles allow to keep unchanged impact strength, strongly deteriorated by adding unmodified CaCO3. Finally, the presence of CaCO3 nanoparticles significantly improves the abrasion resistance of PMMA also modifying its wear mechanism.  相似文献   

6.
Al(OH)3/PMMA nanocomposites were prepared by the emulsion polymerization of methyl methacrylate (MMA) in the presence of surface‐functionalized Al(OH)3 particles. Nanosized Al(OH)3 particles were previously functionalized with a silane coupling agent, 3‐(trimethoxysilyl) propyl methacrylate (γ‐MPS), which was confirmed by FT‐IR and XRF analysis. The average size of seed particles was around 70 nm, and the density of the coupling agent on the particles was calculated to be 8.9 µmol m?2. The emulsion polymerization was attempted at relatively high solid content of 40–46 wt%. The ratio of the seed particles to MMA had a strong influence on the stability of latex as well as the morphology of composites. Nanocomposites where several PMMA nodules were attached on the surface of Al(OH)3 core were produced with stable latex emulsion when the weight percents of Al(OH)3 to MMA were below 20. In the case of higher ratio of 30%, however, the latexes became unstable with an aggregation, and the product morphology was in the shape of large composite. Thermogravimetric analysis showed an improved thermal stability of PMMA composites with the incorporation of Al(OH)3 nanoparticles. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

7.
Before polymerization, the introduction of double bonds onto the surface of the TiO2 particles was achieved by the treatment of the TiO2 particles with the silane-coupling agent. Via in-situ emulsion polymerization, the poly(methyl methacrylate) (PMMA)/titanium oxide (TiO2) composite particles were prepared by graft polymerization of MMA from the surface of the modified TiO2 particles. The structure of the obtained PMMA/TiO2 composite particles was characterized using fourier transform infrared spectra (FT-IR), thermo-gravimetric analysis (TGA), differential scanning calorimetry (DSC) and size excluding chromatography (SEC). The morphology of the obtained PMMA/TiO2 composite particles was observed by transmission electron microscope (TEM). The results of FT-IR and TGA measurements show that PMMA is successfully grafted from the surface of the TiO2 particles and that the percentage of grafting and the grafting efficiency can reach 208.3% and 96.6%, respectively. At the same time, the TGA and DSC measurements indicate an enhancement of thermal stability. TEM images demonstrate a better dispersion of the TiO2 particles in the composite latex. In addition, UV-visible absorption measurements show that the PMMA/TiO2 composite particles can absorb over 95% UV light at 210–400 nm wavelength.  相似文献   

8.
In this paper, poly(methyl methacrylate‐co‐sodium sulfopropyl lauryl maleate‐co‐2‐hydroxy‐4‐(3‐methacryloxy‐2‐hydroxylpropoxy) benzophenone)/TiO2 (i.e., poly(MMA‐co‐M12‐co‐BPMA)/TiO2) composite particles were prepared by ultrasonically initiated emulsion polymerization. To study the dispersion and UV‐stability of the composite particles, laser diffraction particle size analyzer (LDPSA), ultraviolet‐visible absorption spectroscopy (UV‐vis), UV‐vis diffuse reflectance spectroscopy (DRS), differential scanning calorimeter (DSC), and the weight loss measurement were used. The results indicate that the dispersion of the poly(MMA‐co‐M12‐co‐BPMA)/TiO2 composite particles prepared by ultrasonically initiated emulsion polymerization is good. And the composite particles can absorb UV light; the ultraviolet absorption strength of poly(MMA‐co‐M12‐co‐BPMA) grafted onto the surface of TiO2 has not changed after UV irradiation while that of PMMA changed significantly. The UV absorption strength, weight loss, and Tg changes are in the order PMMA> poly(MMA‐co‐M12‐co‐BPMA) >PMMA grafted onto TiO2> poly(MMA‐co‐M12‐co‐BPMA) grafted onto TiO2. These results show that the ultrasonically initiated emulsion polymerization will enhance the UV stability of composite particles, and the UV‐stability of PMMA can be enhanced by the introduction of the organic UV‐stabilizer BPMA and the inorganic UV‐stabilizer titanium dioxide into the PMMA chains by covalent bond, and the effect of the BPMA and the TiO2 used together is better than that used, respectively. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

9.
Summary: Macroporous monoliths consisting of silica nanoparticles embedded in poly(methyl methacrylate) (PMMA) were synthesized in supercritical CO2. Well‐dispersed silica particles, pretreated with functional 3‐(trimethoxysilyl)propyl methacrylate (MPS), were to form colloidal PMMA nanocomposites followed by a sol‐gel transition forming interconnected structures resulting in micron‐sized pores with specific areas between 1 and 7 m2 · g−1. SEM and TEM results revealed uniform morphological characteristics of the composite materials and good dispersions of the silica nanoparticles.

SEM micrograph of PMMA/Silica nanocomposites forming interconnected macroporous monolith. The average size of the silica particles is 50 nm.  相似文献   


10.
CaCO3/polystyrene inorganic/organic composite nanoparticles (50 nm) with a core/shell structure were synthesized in 80% yield by emulsion polymerization. Nanometer CaCO3 was pretreated with γ‐methacryloxypropyltrimethoxysilane in order to introduce polymerizable groups onto its surface. Soxhlet extraction experiments have shown that only 4% of total encapsulating polystyrene (PS) was removable when the ratio of CaCO3 to styrene was relatively low (14.8–29.6%), indicating strong adhesion between CaCO3 and PS.  相似文献   

11.
The mechanical and morphological characteristics of PA6/ABS (60/40)-based hybrid composite containing HNO3-treated short carbon fibers (HSCF) and CaCO3 nanoparticles have been experimentally studied. A counter-rotating twin-screw extruder and an injection molding machine were employed to produce different samples containing 10 wt % of HSCF and 0, 2, 5 and 8 wt % of CaCO3 nanoparticles. The SEM observations indicated high-quality adhesion between HNO3-surface treated carbon fibers and PA6/ABS polymer matrix. In addition, the morphological studies showed that the inclusion of CaCO3 nanoparticles caused a significant effect on the ABS particle dispersion in PA6/ABS matrix. The mechanical properties assessments revealed that the incorporation of 10 wt % HSCF into the PA6/ABS can significantly improve tensile strength (82%), tensile modulus (107%), flexural strength (98%), flexural modulus (104%) and impact resistance (24%). The inclusion of CaCO3 nanoparticles, in the presence of 10 wt % HSCF, led to the noticeable improvements of tensile strength (128% for 2 wt % CaCO3), tensile modulus (199% for 5 wt % CaCO3), flexural strength (146% for 5 wt % CaCO3), flexural modulus (204% for 5 wt % CaCO3) and impact resistance (46% for 2 wt % CaCO3). The surface treatment of carbon fibers, dispersion conditions of nanoparticles and ABS phase in polymeric matrix were found to be the major important factors affecting the mechanical properties.  相似文献   

12.
In this paper, spherical calcium carbonate particles were prepared by using CaCl2 aqueous solution + NH3·H2O + polyoxyethylene octyl phenol ether-10 (OP-10) + n-butyl alcohol + cyclohexane inverse micro emulsion system. Then, nanoscale spherical silica was deposited on the surface of micron calcium carbonate by Stöber method to form the composite material. Scanning electron microscope (SEM), X-ray powder diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), Thermogravimetric analysis (TGA) and X-ray photoelectron spectroscopy (XPS) were used to characterize the morphology and structure of the composite material. It is found that the surface of the composite material has a micro-nano complex structure similar to the surface of a “lotus leaf”, making the composite material show hydrophobicity. The contact angle of the cubic calcium carbonate, spherical calcium carbonate and CaCO3@SiO2 composite material were measured. They were 51.6°, 73.5°, and 76.8°, respectively. After modification with stearic acid, the contact angle of cubic and spherical CaCO3 were 127.1° and 136.1°, respectively, while the contact angle of CaCO3@SiO2 composite was 151.3°. These results showed that CaCO3@SiO2 composite had good superhydrophobicity, and the influence of material roughness on its hydrophobicity was investigated using the Cassie model theory.  相似文献   

13.
Polystyrene template microspheres of narrow size distribution were prepared by dispersion polymerization of styrene in a mixture of ethanol and 2-methoxy ethanol. These template particles dispersed in aqueous solution have been used for the entrapment of ferrocene by a swelling process of methylene chloride emulsion droplets containing ferrocene within these particles, followed by evaporation of methylene chloride. The effects of CH2Cl2 volume and the [CH2Cl2]/[FeC10H10] (w/w) ratio on the size and size distribution of the swollen template particles were elucidated. Air-stable Fe3C nanoparticles embedded in amorphous carbon matrix (Fe3C/C) have been prepared by thermal decomposition of the ferrocene-swollen template polystyrene particles at 500 °C for 2 h in a sealed cell. Decomposition of these swollen template particles for 2 h at higher temperatures led to the formation of carbon nanotubes (CNTs) in addition to the Fe3C/C composite nanoparticles. The yield of the CNTs increased as the annealing temperature was raised. An opposite behavior was observed for the diameter of the formed CNTs. The size and size distribution, crystallinity, and magnetic properties of the different Fe3C/C composite nanoparticles have also been controlled by the annealing temperature.  相似文献   

14.
Magnetic poly(methyl methacrylate) (PMMA)/poly(methyl methacrylate‐co‐methacrylic acid) [P(MMA–MAA)] composite polymer latices were synthesized by two‐stage soapless emulsion polymerization in the presence of magnetite (Fe3O4) ferrofluids. Different types and concentrations of fatty acids were reacted with the Fe3O4 particles, which were prepared by the coprecipitation of Fe(II) and Fe(III) salts to obtain stable Fe3O4 ferrofluids. The Fe3O4/polymer particles were monodisperse, and the composite polymer particle size was approximately 100 nm. The morphology of the magnetic composite polymer latex particles was a core–shell structure. The core was PMMA encapsulating Fe3O4 particles, and the shell was the P(MMA–MAA) copolymer. The carboxylic acid functional groups (COOH) of methacrylic acid (MAA) were mostly distributed on the surface of the composite polymer latex particles. Antibodies (anti‐human immunoglobulin G) were then chemically bound with COOH groups onto the surface of the magnetic core–shell composite latices through the medium of carbodiimide to form the antibody‐coated magnetic latices (magnetic immunolatices). The MAA shell composition of the composite latex could be adjusted to control the number of COOH groups and thus the number of antibody molecules on the magnetic composite latex particles. With a magnetic sorting device, the magnetic immunolatices derived from the magnetic PMMA/P(MMA–MAA) core–shell composite polymer latex performed well in cell‐separation experiments based on the antigen–antibody reaction. © 2005 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 43: 1342–1356, 2005  相似文献   

15.
Homogenously dispersed TiO2/poly(methyl methacrylate) (PMMA) composite microspheres were produced in the size range of 1-10µm and the interfacial characteristics of TiO2 and PMMA in suspension polymerization were considered. In electron microscopy observation, it was found that TiO2 nanoparticles were embedded homogeneously in the PMMA phase. This study elucidates that the interfacial compatibility between TiO2 and PMMA played a decisive role in producing the composite microspheres structured with inner TiO2 and continuous PMMA, which was achieved by treating the surface of the TiO2 particles hydrophobically. The TiO2/PMMA composite microspheres produced showed good ability to protect against UV rays and are therefore of great usefulness in cosmetic formulations.  相似文献   

16.
Nano-ZnO/poly(methyl methacrylate)(PMMA) composite latex microspheres were synthesized by in-site emulsion polymerization. The interfacial compatibility between nano-ZnO particles and PMMA were improved by treating the surface of nano-ZnO particles hydrophobically using methacryloxypropyltrimethoxysilane (MPTMS). TEM indicated that nano-ZnO particles present in nanosphere and have been encapsulated in the PMMA phase. FT-IR confirmed that MPTMS reacted with the nano-ZnO particle and copolymerized with MMA. It was clearly found from SEM that ZnO nanoparticles can be homogeneously dispersed in the PVC matrix. The absorbance spectrum of the nanocomposite polymer suggested that increasing the amount of nano-ZnO in composite particles could enhance the UV-shielding properties of the polymers. The nano-ZnO/PMMA composite particle could eliminate aggregation of ZnO nanoparticle and improve its compatibility with organic polymer. This means that the composite particles can be widely applied in lots of fields.  相似文献   

17.
Polypropylene (PP) model composites were prepared using cross-linked PMMA particles with a very narrow particle size distribution as filler in order to study the micromechanical processes, which take place during deformation. Composites containing a commercial CaCO3 filler with a broad particle size distribution were also prepared and studied for comparison. The filler loading of the composites was changed from 0 to 0.3 volume fraction in 0.05 volume fraction steps. Measurements of acoustic emission signals during the elongation of PP/PMMA model composites allowed us to assign the debonding process, including its initiation, unambiguously to a well-defined section of the stress vs. strain curve. The number and intensity of the acoustic signals detected during the deformation of the matrix polymer and the composite, respectively, differed considerably, which made possible the separation of the various micromechanical deformation processes occurring in them. At low extensions the composite is deformed elastically, then debonding takes place in a very narrow deformation range, followed by the plastic deformation of the matrix. At small particle content debonding occurs at relatively low stresses, which differ significantly from the yield stress. Considerable plastic deformation of the matrix begins at the yield point. At larger filler content debonding and shear yielding occur simultaneously. Micromechanical deformation processes cannot be separated as clearly in composites prepared from the commercial CaCO3 filler with a broad particle size distribution. The debonding of particles with different size occurs in a wide deformation range because of the particle size dependence of debonding stress. The analysis of characteristic values derived from acoustic emission experiments proved that the interacting stress fields of neighboring particles influence the deformation process and that even large particles may aggregate or at least associate at large filler content.  相似文献   

18.
Emulsion templating is an effective method to prepare well-defined porous polymeric materials. In this paper, porous CaCO3/polyacrylamide (PAM) composites were prepared by emulsion templating polymerization in supercritical CO2(scCO2) by using a commercial grade surfactant (FC4430), therefore, the amount of the fillers and the pore size distribution of the composites can be modulated based on the demands of those potential applications as biomaterials. Calcium carbonate crystals can be in situ synthesized in the porous PAM matrix, and the morphology of CaCO3 varied with the conditions of the reaction, the results indicated that three kinds of crystals were observed in the porous matrix. The results of scanning electron microscopy (SEM) and mercury intrusion porosimetry (MIP) showed that the macropores in PAM were interconnected and with narrow pore size distributions.  相似文献   

19.
Polystyrene (PSt) seed latex was first prepared via soap‐free emulsion polymerization in the presence of a small amount of methacrylic acid using ammonium persulfate as initiator, and then seeded emulsion polymerization of sodium 4‐styrenesulfonate (NaSS) and St was carried out to synthesize P(St‐NaSS) core latex using 2,2′‐azobisisobutyronitrile as initiator. After that, P(St‐NaSS)/CaCO3 core‐shell nanoparticles were fabricated by sequentially introducing Ca(OH)2 aqueous solution and CO2 gas into the core latex. The morphology of the core and core‐shell nanoparticles was characterized by dynamic light scattering (DLS) and transmission electron microscopy (TEM), and the state of CaCO3 shell was confirmed with high‐resolution scanning transmission electron microscope (HR‐STEM) and selected area electron diffraction (SAED). Results showed that PNaSS chains were successfully grafted onto the PSt seed surface, and length of the PNaSS "hairs" could be modulated by adjusting NaSS amount. Sulfonic groups of the PNaSS hairs served as additives in the formation and stabilization of amorphous CaCO3(ACC) and prevented ACC from sequent transformation into crystalline states. The amount of the anchored CaCO3 increased with the growth of PNaSS hair length, and reached 51 wt% (by thermalgravimetric analysis) under the optimal encapsulating temperature of 45°C. Moreover, the forming mechanism of P(St‐NaSS)/CaCO3 core‐shell nanoparticles was proposed.  相似文献   

20.
The elegant approach of in situ deposition technique was used for the synthesis of nano CaCO3. the nanosize of particles was confirmed by the X‐ray diffraction (XRD) technique. Differential scanning calorimetry (DSC) was used for determination of the enthalpy. The nano CaCO3 polypropylene (PP) composites were prepared by taking 2 and 10 wt % of different nanosizes (21–39 nm) of CaCO3. Conversion of the α phase to β was observed in the case of 2 wt % of a 30‐nm sized amount of CaCO3 in a PP composite. The decrement in ΔH and percent crystallinity, as well as the increment in melt temperature were recorded for 6 wt % nano CaCO3 with a decrease in nanosize from 39 to 21 nm. The increment in tensile strength with an increase in the amount of nano CaCO3 was observed, and the lower particle size showed greater improvement. The improvement in thermal and mechanical properties is because of the formation of a greater number of small spherulites uniformly present in the PP matrix. © 2004 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 43: 107–113, 2004  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号