首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 93 毫秒
1.
蛋白质的界面吸附及其生物活性因它在构建生物传感、生物电子器件和生物燃料电池等方面具有重要的作用而倍受关注.对此,界面电场是吸附的一个重要影响因素,它能明显地影响蛋白质分子在材料界面的吸附量、分子构象以及分子定向.本文应用电化学方法和红外光谱技术研究了血红蛋白在三维多孔金膜电极上的吸附动力学及其生物活性随界面电场的变化关系.结果表明,由界面电场产生的过量表面电荷可借助与蛋白质分子之间的静电作用加速蛋白质分子在电极表面的吸附,提高其吸附量;但是,过高的界面电场将破坏吸附蛋白质的构象以及降低它还原过氧化氢的催化活性;只有在零电荷电位下,吸附在电极表面的血红蛋白才能保持其天然的构象和生物催化活性.本研究将为生物传感器、生物电子器件和生物燃料电池的构建提供理论依据,加深对荷电生物界面上生物分子界面行为的认识.  相似文献   

2.
采用分子动力学模拟方法比较了溶菌酶蛋白在两种典型聚合物防污材料聚乙二醇(PEG)和聚二甲基硅氧烷(PDMS)表面的吸附行为, 在微观上探讨了聚合物膜表面性质对蛋白质吸附的影响. 根据蛋白质与聚合物膜之间的相互作用、能量变化及表面水化层分子的动力学行为, 解释了PEG防污涂层相对于PDMS表面具有更佳防污效果的原因: (1) 相比PDMS涂层, 蛋白质与PEG涂层的结合能量较低, 使其结合更加疏松; (2) 蛋白质吸附到材料表面要克服表面水化层分子引起的能障, PEG表面与水分子之间结合紧密, 结合水难于脱附, 造成蛋白质在其表面的吸附需要克服更高的能量, 不利于蛋白质的吸附.  相似文献   

3.
采用分子动力学模拟方法比较了溶菌酶蛋白在两种典型聚合物防污材料聚乙二醇(PEG)和聚二甲基硅氧烷(PDMS)表面的吸附行为,在微观上探讨了聚合物膜表面性质对蛋白质吸附的影响.根据蛋白质与聚合物膜之间的相互作用、能量变化及表面水化层分子的动力学行为,解释了PEG防污涂层相对于PDMS表面具有更佳防污效果的原因:(1)相比PDMS涂层,蛋白质与PEG涂层的结合能量较低,使其结合更加疏松;(2)蛋白质吸附到材料表面要克服表面水化层分子引起的能障,PEG表面与水分子之间结合紧密,结合水难于脱附,造成蛋白质在其表面的吸附需要克服更高的能量,不利于蛋白质的吸附.  相似文献   

4.
载体材料与蛋白质的相互作用及对其构象的影响   总被引:1,自引:0,他引:1  
蛋白质与载体材料间存在着疏水性、静电等相互作用力。这些作用力不仅决定了蛋白质分子在载体表面吸附的数量,也导致吸附蛋白质分子构象发生变化,引起蛋白质活性的改变。蛋白质的特性(分子量和浓度等)、载体材料的表面结构(表面化学组成和物理结构等)及溶液性质(pH和离子强度等)对蛋白质与载体材料间的相互作用产生影响。利用各种先进的分析技术对载体材料表面的蛋白质分子构象进行表征是这一研究领域的热点。本文对这一方面的最新研究进展进行综述。  相似文献   

5.
研究蛋白质在固相表面的静电吸附特性,进而控制蛋白质在修饰表面的静电吸附尤为重要,表面等离子体子共振可以检测金属表面吸附物质厚度和折射率的变化^[1]。这种技术已在研究生物分子相互作用^[2]和考察自组装单层的形成^[3]及蛋白质在固体表面吸附行为^[9-11]等方面得到广泛的应用。对蛋白质在固体表面吸附行为的研究多为考察不同的蛋白质在不同的修饰表面的吸附行为。然而,对蛋白质在修饰表面静电吸附的本质影响因素的研究却少有报道^[4]。本文使用表面等离子体子共振技术实时研究了蛋白质在甲羧基化葡聚糖修饰表面的静电吸附与溶液pH值及离子强度的依赖关系。  相似文献   

6.
邓琳  祁志美 《物理化学学报》2010,26(10):2672-2678
通过利用时间分辨光波导分光光谱技术原位测量从蛋白质-亚甲基蓝(MB)混合水溶液吸附到亲水玻璃光波导表面的MB可见光吸收谱,观测到在溶液pH值低于蛋白质等电点时MB与牛血清蛋白(BSA)以及MB与血红蛋白(Hb)存在竞争吸附行为,进一步测得这种竞争吸附行为对蛋白质浓度十分敏感,可以用于简单测定溶液中的蛋白质含量.基于Langmuir等温吸附理论推导出了两种分子竞争吸附的动力学方程,并利用该动力学方程对实验测得的吸光度随时间变化曲线进行了最佳拟合,揭示了玻璃表面吸附的MB分子个数在达到最大值后随时间呈指数衰减,同时得出拟合参数与蛋白质浓度呈准线性关系.  相似文献   

7.
不锈钢(AISI 316L)是目前在医药器械中应用最为广泛的商业化材料. 下一代的不锈钢智能材料将特殊功能的生物活性分子(或纳米粒子)修饰在金属表面以模拟组织功能、提高生物/细胞相容性, 这是目前材料科学研究的热点领域之一. 本文研究了具有微纳米多孔表面结构的316L 不锈钢对抗体和生物酶分子的吸附作用,并与这些生物分子在光滑表面以及镀金表面的吸附进行了比较. 研究发现不锈钢可通过简单的电化学腐蚀方法在表面产生微纳米多孔结构. 微纳米孔不锈钢表面可稳定地吸附抗体或辣根过氧化物酶分子, 其吸附量与喷镀金表面相当或更好. 用表面活性剂(10%牛血清白蛋白(BSA)或0.2% Tween-20)洗涤不能除去吸附的蛋白.用5% Tween-20 预处理金属表面, 则可减少一半的抗体吸附量; 但表面活性剂预处理对辣根过氧化物酶的吸附没有影响. 吸附蛋白质后的金属表面湿润度大大增加; 蛋白质修饰的微纳米孔不锈钢表面表现出了很好的亲水性(水接触角小于50°), 指示了很好的生物相容性. 而金属表面的湿润度则主要取决于蛋白质物种, 并与蛋白质的吸附量正相关. 吸附于不锈钢微纳米孔表面的抗体仍保持了良好的生物活性; 用此种方式制备的抗CD34抗体修饰的不锈钢血管支架可以高密度并高选择性地吸附其目标细胞(如KG-1细胞). 本文工作为未来制备新型的无高聚物涂层的不锈钢智能医学生物材料提供了基础.  相似文献   

8.
表面增强喇曼光谱已广泛应用于物质分子在金属表面吸附的研究.人们发现,不仅无机物和有机小分子能产生SERS,而且生物分子,如核酸、色蛋白以及蛋白质均能产生SERS效应,并以此来研究生物分子-蛋白质的变性问题.  相似文献   

9.
吸附色素蛋白与纳米银粒子间的光诱导电子传递   总被引:1,自引:0,他引:1  
采用表面增强拉曼光谱研究了吸附态微过氧化物酶和细胞色素c的光诱导还原.结果表明,吸附于粗糙银电极表面的过氧化物酶和细胞色素c在413nm激光连续照射下被部分还原.光诱导还原可归因于电极表面纳米银粒子的定域表面等离子体吸收使得自由电子受激,受激电子进而转移进入吸附分子空轨道,导致吸附蛋白质的还原.  相似文献   

10.
PNIPAAm改性表面对蛋白质吸附的调控及其应用   总被引:1,自引:0,他引:1  
于谦  陈红 《化学进展》2014,26(8):1275-1284
根据不同领域的需要,控制蛋白质在材料表面的吸附是一个具有重要应用价值的课题。聚(N-异丙基丙烯酰胺)(PNIPAAm)改性表面能够响应外界温度变化从而改变其表面性质,这一特点为调控蛋白质的吸附提供了可能。近年来,研究者们应用多种表征方法考察了不同温度下蛋白质在PNIPAAm改性表面的吸附,并试图从分子水平上深入理解其吸附机制及影响因素。本文综述了近年来应用PNIPAAm改性表面对蛋白质吸附的研究及其最新进展。发现当PNIPAAm层厚度处于一定范围内时,PNIPAAm改性表面表现出对蛋白质吸附的温度敏感性,并可以利用这一性质将其应用于蛋白质纯化及分离和生物传感器等领域。而当PNIPAAm层厚度超过一个临界值时,PNIPAAm改性表面表现出良好的阻抗血浆蛋白质的性质,使其有望在血液相容性表面领域得到应用。最后,就PNIPAAm改性表面调控蛋白质吸附的未来发展方向简要地进行了展望。  相似文献   

11.
Many commercial soft contact lenses are based on poly-2-hydroxyethyl methacrylate (HEMA) and acrylic acid (AA) hydrogels. The adsorption of proteins, albumin and lysozyme, on such contact lens surfaces may cause problems in their applications. In this work the adsorption of proteins, albumin and lysozyme, on hydrogel surfaces, AA and HEMA, was investigated as a function of concentration of protein. Also the effects of pH and ionic strength of protein solution on the adsorption of protein were examined. The obtained results indicated that the degree of adsorption of protein increased with the concentration of protein, and the adsorption of albumin on HEMA surface at the studied pHs (6.2-8.6) was higher than AA surface, whereas the adsorption of lysozyme on AA surface at the same pHs was higher than HEMA. The change in ionic strength of protein solution affected the proteins adsorption on both AA and HEMA surfaces. Also, the amount of sodium ions deposited on the AA surface was much higher than HEMA surface. This effect can be related to the negative surface charge of AA and its higher tendency for adsorption of sodium ions compared to the HEMA surface.  相似文献   

12.
考察了酪蛋白酸钠(sodium caseinate,SC)和乳清分离蛋白(whey protein isolate,WPI)在表面性质不同的3种羟基磷灰石(hydroxyapatite,HA)颗粒上的界面吸附,分析了蛋白质的分子构型和HA颗粒的表面性质等因素对蛋白质在HA界面吸附的影响,重点讨论了SC和WPI肽链上磷酸化丝氨酸基团(phosphorylated serine residues,Ser-P)的数量和分布对吸附差异的影响.通过傅里叶变换红外光谱和表面电位分析发现SC和WPI无法被比表面积较小的HA颗粒有效吸附,但是在有效吸附面积较高的球状纳米HA和棒状微米HA上能够被吸附.Ser-P的存在使得SC在HA界面的吸附量更高、吸附能力更强.Ser-P数量和分布的不同则导致了SC中不同的蛋白组分在HA界面的竞争性吸附:β-酪蛋白在2μmHA界面始终存在优先吸附性;当纳米HA的浓度低于15 mg/mL时,纳米HA界面会优先吸附αs-酪蛋白.  相似文献   

13.
The adsorption of bovine serum albumin (BSA) and lysozyme (LYS) on siliceous SBA-15 with 24 nm pores was studied using flow microcalorimetry; this is the first attempt to understand the thermodynamics of protein adsorption on SBA-15 using flow microcalorimetry. The adsorption mechanism is a strong function of protein structure. Exothermic events were observed when protein–surface interactions were attractive. Entropy-driven endothermic events were also observed in some cases, resulting from lateral protein–protein interactions and conformational changes in the adsorbed protein. The magnitudes of the enthalpies of adsorption for primary protein–surface interactions decrease with increased surface coverage, indicating the possibility of increased repulsion between adsorbed protein molecules. Secondary exothermic events were observed for BSA adsorption, presumably due to secondary adsorption made possible by conformational changes in the soft BSA protein. These secondary adsorption events were not observed for lysozyme, which is structurally robust. The results of this study emphasize the influence of solution conditions and protein structure on conformational changes of the adsorbed protein and the value of calorimetry in understanding protein–surface interactions.  相似文献   

14.
The kinetics of adsorption of lysozyme and alpha-lactalbumin from aqueous solution on silica and hydrophobized silica has been studied. The initial rate of adsorption of lysozyme at the hydrophilic surface is comparable with the limiting flux. For lysozyme at the hydrophobic surface and alpha-lactalbumin on both surfaces, the rate of adsorption is lower than the limiting flux, but the adsorption proceeds cooperatively, as manifested by an increase in the adsorption rate after the first protein molecules are adsorbed. At the hydrophilic surface, adsorption saturation (reflected in a steady-state value of the adsorbed amount) of both proteins strongly depends on the rate of adsorption, but for the hydrophobic surface no such dependency is observed. It points to structural relaxation ("spreading") of the adsorbed protein molecules, which occurs at the hydrophobic surface faster than at the hydrophilic one. For lysozyme, desorption has been studied as well. It is found that the desorbable fraction decreases after longer residence time of the protein at the interface.  相似文献   

15.
Binary brushes constituted from two incompatible polymers can be used in the form of ultrathin polymeric layers as a versatile tool for surface engineering to tune physicochemical surface characteristics such as wettability, surface charge, chemical composition, and morphology and furthermore to create responsive surface properties. Mixed brushes of oppositely charged weak polyelectrolytes represent a special case of responding surfaces that are sensitive to changes in the pH value of the aqueous environment and therefore represent interesting tools for biosurface engineering. The polyelectrolyte brushes used for this study were composed of two oppositely charged polyelelctrolytes poly(2-vinylpyridine) (P2VP) and poly(acrylic acid) (PAA). The in-situ properties and surface characteristics such as as surface charge, surface tension, and extent of swelling of these brush layers are functions of the pH value of the surrounding aqueous solution. To test the behavior of the mixed polylelctrolyte brushes in contact with biosystems, protein adsorption experiments with globular model proteins were performed at different pH values and salt concentrations (confinement of counterions) of the buffer solutions. The influence of the pH value, buffer salt concentration, and isoelectric points (IEP) of the brush and protein on the adsorbed amount and the interfacial tension during protein adsorption as well as the protein adsorption mechanism postulated in reference to recently developed theories of protein adsorption on polyelectrolyte brushes is discussed. In the salted regime, protein adsorption was found to be similar to the often-described adsorption at hydrophobic surfaces. However, in the osmotic regime the balance of electrostatic repulsion and a strong entropic driving force, "counterion release", was found to be the main influence on protein adsorption.  相似文献   

16.
Interactions between proteins and biomaterial surfaces correlate with many important phenomena in biological systems. Such interactions have been used to develop various artificial biomaterials and applications, in which regulation of non-specific protein adsorption has been achieved with bioinert properties. In this research, we investigated the protein adsorption behavior of polymer brushes of dendrimer self-assembled monolayers (SAMs) with other generations. The surface adsorption properties of proteins with different pI values were examined on gold substrates modified with poly(amidoamine) dendrimer SAMs. The amount of fibrinogen adsorption was greater than that of lysozyme, potentially because of the surface electric charge. However, as the generations increased, protein adsorption decreased regardless of the surface charge, suggesting that protein adsorption was also affected by density of terminal group.  相似文献   

17.
Nonionic surfactants such as Tween 80 are used commercially to minimize protein loss through adsorption and aggregation and preserve native structure and activity. However, the specific mechanisms underlying Tween action in this context are not well understood. Here, we describe the interaction of the well-characterized, globular protein lysozyme with Tween 80 at solid–water interfaces. Hydrophilic and silanized, hydrophobic silica surfaces were used as substrates for protein and surfactant adsorption, which was monitored in situ, with ellipsometry. The method of lysozyme and Tween introduction to the surfaces was varied in order to identify the separate roles of protein, surfactant, and the protein–surfactant complex in the observed interfacial behavior. At the hydrophobic surface, the presence of Tween in the protein solution resulted in a reduction in amount of protein adsorbed, while lysozyme adsorption at the hydrophilic surface was entirely unaffected by the presence of Tween. In addition, while a Tween pre-coat prevented lysozyme adsorption on the hydrophobic surface, such a pre-coat was completely ineffective in reducing adsorption on the hydrophilic surface. These observations were attributed to surface-dependent differences in Tween binding strength and emphasize the importance of the direct interaction between surfactant and solid surface relative to surfactant–protein association in solution in the modulation of protein adsorption by Tween 80.  相似文献   

18.
The adsorption of bovine serum albumin (BSA) onto a hydrophobic graphite surface is studied using molecular-dynamics simulation. In addition to the free, that is, unsteered, adsorption, we also investigate forced adsorption, in which the action of an AFM tip pushing the protein with constant force to the surface is modeled. Using an implicit inviscid water model, the adsorption dynamics and energetics are monitored for two different initial protein orientations toward the surface. In all cases, we find that the protein partially unfolds and spreads on the surface. The spreading is in agreement with the well-known high biocompatibility of graphite-based implants. The denaturation is, however, greatly enhanced in the case of forced adsorption. We follow the position of the so-called lipid-binding pocket found in subdomain IIIA (Sudlow site II) during adsorption and find that it is tilted and moved toward the graphite surface in all cases, in agreement with its hydrophobic character. The relevance of our findings for the common measurement procedure of studying protein adhesion using AFM experiments is discussed.  相似文献   

19.
Surface properties of four proteins having molecular weights less than 5,000 are reported at air/water and alumina/water interface at pH 7.0. Reversibility in the adsorption of these proteins at the alumina/water interface is tested. The adsorption on alumina/water interface has been found to be controlled by electrostatic interaction. Positive adsorption was obtained when protein and alumina surface had opposite charges and negative adsorption was obtained when both protein and surface had same charges. Of the four proteins reversibility in adsorption was observed with the one having the lowest molecular weight of 3100. The adsorption behavior apparently had no correlation with their surface hydrophobic!ty. Time dependent changes in air/water interfacial tension was observed for all the four proteins indicating time dependent loosening of compact protein structure and surface unfolding.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号