首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
以十六烷基三甲基溴化铵(CTAB)/正丁醇/正辛烷/硝酸钕[Nd(NO3)3]溶液(碳酸钠溶液)所组成的反相微乳液为反应介质, 采用微乳液溶剂热法合成了Nd2(CO3)3·8H2O, 并考察了水/核比([H2O]/[CTAB])和Nd(NO3)3的浓度对其形貌和尺寸的影响. 利用X射线衍射(XRD)、 热分析(DSC-TGA)、 扫描电子显微镜(SEM)和透射电子显微镜(TEM)等对Nd2(CO3)3·8H2O的晶型、 形貌及尺寸进行了表征, 并提出了不同形貌Nd2(CO3)3·8H2O形成的可能机理. 结果表明, 随着水/核比的增大, Nd2(CO3)3·8H2O的形貌从多面体变成鱼尾状, 再变成针状; 随着Nd(NO3)3浓度的增大, 针状Nd2(CO3)3·8H2O的尺寸逐渐减小.  相似文献   

2.
The controlled synthesis of Co3O4 nanostructures with morphologies of micro-spheres, nanobelts, and nanoplates was successfully achieved by a simple solvothermal method. Various comparison experiments showed that several experimental parameters, such as the reaction temperature and the concentration of NH3·H2O, play important roles in the morphological control of Co3O4 nanostructures. A lower temperature and a lower concentration of NH3·H2O favor spherical products with a diameter of 1–1.5 μm, whereas a higher temperature and a higher concentration of NH3·H2O generally lead to the formation of nanobelts with a width of 20–150 nm. In addition, Co3O4 hexagonal nanoplates with an edge length of about 200–300 nm are also obtained by adding surfactant CTAB. A rational mechanism is proposed for the selective formation of various morphologies. X-ray powder diffraction (XRD), transmission electron microscopy (TEM), selected-area electron diffraction (SAED), and field-emission scanning electron microscope (FE-SEM) were used to characterize the products.  相似文献   

3.
Using SrC12-6H2O and Na2CO3 as the main raw materials and adding different complexons as modifiers with simple co-precipitation method, SrCO3 crystals with distinct morphologies like spherical, bundle-like, overlapping plate-like, hexagonal star-like, dumbbell-like, etc. can be synthesized in the ethanol-water mixtures. The samples were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM) and Fourier transform infrared spectrograph (FT-IR). The interrelated effect mechanism is presented in the end. Results show that the modifier carboxyl groups play a significant role in controlling the SrCO3 crystal morphologies, which can alter the crystal growth unit (Sr^2+) supply mode and induce the crystal formation with the morphologies matching their spatial configurations.  相似文献   

4.
The growth characteristics of calcium carbonate (CaCO3) in the mixed systems of 1,2-bis(4-aminophenoxy)ethane-N,N,N′,N′-tetraacetic acid (BAPTA) and cetyltrimethyl ammonium bromide (CTAB) were studied in our experiments. The as-prepared products were characterized by scanning electron micro-scope and X-ray diffraction. Calcite and vaterite with various morphologies were contained in the BAPTA single system and the mixed systems with CTAB/BAPTA molar ratio of 1: 2 and 1: 1.25, while only calcite produced in the mixed systems with CTAB/BAPTA molar ratio of 1: 5, 1: 1, 1: 0.67 and pure CTAB system. The possible formation mechanisms of CaCO3 produced in different solutions were discussed in the end.  相似文献   

5.
A facile L-cysteine-assisted route was designed for the selectively controlled synthesis of 1D and novel, interesting 3D CdS spherical nanostructures constructed from CdS nanorods (or nanopolypods) in a binary solution. By controlling reaction conditions such as the molar ratio between Cd(OAc)2 and L-cysteine and the volume ratio of the mixed solvents, the synthesis of various 3D architectural structures and 1D wirelike structures in large quantities can be controlled. This is the first reported case of the direct growth of novel 3D self-assemblies of CdS nanorods (or nanopolypods). The morphology, structure, and phase composition of the as-prepared CdS products were examined by using various techniques (X-ray diffraction (XRD), field-emission scanning electron microscopy (FESEM), transmission electron microscopy (TEM), selected-area electron diffraction (SAED), high-resolution TEM, and Raman spectroscopy). On the basis of the results from TEM studies and our analysis, we speculate that in the present synthesis the L-cysteine dominates nucleation growth and the ethylenediamine (en)-dominated, oriented-assembly process. Interestingly, the products obtained show a gradient evolution in color from light-yellow to dark-yellow, which implies that their intrinsic optical properties change, possibly due to variations in their special morphologies and structures. This facile solution-phase L-cysteine-assisted method could be extended for the controlled preparation of other metal chalcogenides nanostructures with complex morphologies.  相似文献   

6.
A novel synthesis of "hairy urchin"-shaped polyaniline (PAni) and its surface coverage with nanospikes was achieved from a simple microemulsion polymerization technique in the presence of β-cyclodextrin (β-CD). The rodlike micelle phase was characterized, and the key factors affecting the formation of PAni nanostructures were systematically examined. Ferric chloride (FeCl(3)) has played a role as a structural directing agent to fabricate the polymer as hairy urchin-like structure/nanorods via a cooperative interaction between FeCl(3) and DoTAC in an aqueous medium. Host-guest inclusion complex of β-cyclodextrin with aniline was used as a monomer. It has been revealed that the formation of the supramolecular complexes of polyaniline with β-CD due to host-guest interaction is indispensable for the fabrication of these unique PAni nanostructures, and a suitable β-CD to aniline molar ratio is essential to their exclusive formation. Different varieties of PAni nanostructures such as hairy urchin, branched particles consisting of rodlike branches, and regular rodlike particles were obtained in the presence of FeCl(3). Also, in the absence of FeCl(3), a predominant product of regular spherical particles and wirelike aggregation exhibiting faceted surfaces were obtained. The structures of polyaniline hairy urchin-like nanorods were analyzed using transmission electron microscopy (TEM). The synthesized polymer was characterized by Fourier-transform infrared spectroscopy and X-ray diffraction technique. Additionally, the relationship between the morphology and the conductivity of the PAni nanostructures was investigated as well.  相似文献   

7.
以硝酸锌[Zn(NO3)2.6H2O]和尿素[CO(NH2)2]作前驱体,通过微波诱导燃烧技术可控合成具有不同形貌的ZnO纳米晶体,并用热重分析和差热分析进行了研究。对各种生长条件:微波功率,辐射时间和尿素/Zn2+物质的量的比对ZnO纳米晶体形貌的影响作了分析。结果表明:尿素/Zn2+物质的量的比对ZnO纳米材料的形貌具有显著影响。X衍射图表明合成的ZnO纳米结构呈六角形。傅里叶变换红外光谱图中400~500 cm-1处明显的峰为Zn-O的振动峰。ZnO纳米结构的发光光谱在366 nm的带边发射,因缺陷又由许多可见光发射峰组成。用扫描电子显微镜、透射电子显微镜、选区电子衍射研究了花状ZnO纳米结构的增长机理。本方法仅需几分钟就获得的了ZnO纳米结构。  相似文献   

8.
以乙酸铅和硫脲为主要原料,十二烷基磺酸钠和十六烷基三甲基溴化铵为表面活性剂,在120℃反应12h,水热法制备了PbS纳米棒.并利用X射线粉末衍射(XRD)、透射电子显微镜(TEM)和高分辨电子显微镜(HRTEM)等手段对产物进行了表征,实验结果表明:产物为纯相立方结构的PbS单晶纳米棒.考察了乙酸铅和硫脲间的摩尔比以及反应温度对合成产物的影响,并初步探讨其形成机理.  相似文献   

9.
In this paper, we report a method of biomimetic synthesis of MgCO(3)·3H(2)O and MgO Viburnum opulus-like complex nanostructures with superhydrophobicity and adsorption properties. The MgCO(3)·3H(2)O complex nanostructures can be obtained by changing experimental parameters, including concentrations of reactants (dextran and MgCl(2)), molar ratios of reactants, and reaction time. The phase structure of as-synthesized samples was characterized by X-ray diffraction (XRD). The morphology and structure are studied by scanning electron microscopy (SEM), transmission electron microscopy (TEM), and Fourier transform infrared (FT-IR) spectroscopy. The MgCO(3)·3H(2)O complex nanostructures exhibited superhydrophobicity, due to their unique superstructures, and was proved by the contact angle (CA) measurement. We also show that a simple calcination of these unusually shaped MgCO(3)·3H(2)O results in spontaneous formation of MgO complex nanostructures while the unique shape can be maintained, and the as-synthesized MgO nanostructures show excellent adsorption property. These unique structures and properties will open up a wide range of potential applications in material and environmental protection.  相似文献   

10.
锰氧化物是一类重要的且具有广泛应用背景的材料, 控制合成不同形貌和组成的锰氧化物纳米结构将有助于拓宽其应用领域. 本文报道了以Mn3O4为前驱体, 通过水热法控制合成MnO2纳米结构的方法. 用X射线衍射(XRD)、扫描电镜(SEM)、透射电镜(TEM)等手段对产物进行表征. 在硫酸体系中,当反应温度为80 和180 ℃时, 所得产物分别为γ-MnO2海胆结构和β-MnO2单晶纳米棒. 此外, MnOOH纳米线可以在稀酸溶液中合成. 考察了反应温度、溶液酸度、反应时间对产物结构的影响, 并提出了基于γ-MnO2为中间产物的反应机理. 实验结果表明, 水热体系促进了产物的各向异性生长并最终形成不同形貌和结构的锰氧化物.  相似文献   

11.
A novel tetraethylenepentamine (TEPA)-directed method has been successfully developed for the controlled synthesis of ZnSe particles with distinctive morphologies, including nanobelts, nanowires, and hierarchically solid/hollow spheres. These structures, self-assembled from nanobelts and nanorods, have been synthesized by adjusting the reaction parameters, such as the solvent composition, reaction temperature, and the aging time. Results reveal that the volume ratio of H2O and TEPA plays a crucial role in the final morphology of ZnSe products. The mechanisms of phase formation and morphology control of ZnSe particles are proposed and discussed in detail. The products have been characterized by means of X-ray diffraction, field-emission scanning electron microscopy, transmission electron microscopy (TEM), selected area electron diffraction, high-resolution TEM, Raman spectra and luminescence spectroscopy. The as-prepared ZnSe nanoparticles display shape- and size-dependent photoluminescent optical properties. This is the first time to report preparation of complex hollow structures of ZnSe crystals with hierarchy through a simple solution-based route. This synthetic route is designed to exploit a new H2O/TEPA/N2H4H2O system possibly for the preparation of other semiconductor nanomaterials.  相似文献   

12.
Owing to the important role of dimensionality in the properties of nanomaterials, various types of 1D nanostructured materials, including metals and alloys, inorganic oxides, inorganic salts and polymers have been synthesized and their novel properties were also extensively studied in the recent years1-5. Various preparation methods towards diverse 1D-nanomaterials, including templating methods, catalytic growth, electrochemistry, chemical vapor deposition, solution-based solvothermal treatmen…  相似文献   

13.
Multilayered 1,2-ethylene-silica nanotubes were prepared with cetyltrimethylammonium bromide(CTAB)as a template and(S)-β-citronellol(CN)as a co-structure-directing agent.For a better understanding of t...  相似文献   

14.
The formation process of titania based nanorods during hydrothermal synthesis starting from an amorphous TiO2.nH2O gel has been investigated. Sodium tri-titanate (Na2Ti3O7) particles with a rodlike morphology were prepared by a simple hydrothermal process in the presence of a concentrated NaOH aqueous solution. The ion exchange reaction of the synthesized Na2Ti3O7 nanorods with HCl under ultrasonic treatment promotes a complete sodium substitution and the formation of H2Ti3O7 nanorods. Low-temperature annealing of the as-produced nanorods of Na2Ti3O7 and H2Ti3O7 leads to a loss of the layered crystal structure and the formation of nanorods of condensed framework phases-sodium hexa-titanate (Na2Ti6O13) and metastable TiO2-B phases, respectively. These transformations proceed without a significant change in particle morphology. The nanostructures were investigated by scanning electron microscopy (SEM), powder X-ray diffraction (XRD), the Brunauer-Emmett-Teller (BET) method, thermogravimetric analysis (TGA), and Raman spectroscopy. The structural defects of the synthesized nanorods were investigated by high-resolution electron microscopy. The presence of planar defects can be attributed to the exfoliation of the zigzag ribbon layers into two-dimensional titanates as well as to the condensation of the layers of TiO6 octahedra into three-dimensional frameworks.  相似文献   

15.
MoO(3) nanostructures with different morphologies, such as helical nanosheets, crosslike nanoflowers, and nanobelts, have been synthesized on a large scale by an environmentally friendly chemical route. The evolution process from helical nanosheets to crosslike nanoflowers to nanobelts is observed for the first time. The influences of reaction time and the molar ratio of molybdenum and H(2)O(2) on the morphologies of MoO(3) nanostructures have been investigated. The synthetic process is environmentally friendly and may be extended to synthesize nanostructures of other metal (W, Ti, and Cr) oxides.  相似文献   

16.
CuO hollow microspheres have been fabricated through a simple hydrothermal method in the presence of cetyltrimethylammonium bromide (CTAB). The products were characterized by Fourier transform infrared spectroscopy, X-ray diffraction, and scanning electron microscopy. The effects of reaction temperature, surfactant, and the molar ratio of Urea/Cu(Π) on the morphologies of the resulting products were investigated. The possible formation mechanism of CuO hollow dandelion-like architectures was proposed. The hierarchical CuO hollow microspheres exhibited a high photocatalytic activity for decolorization of Rhodamine B (RhB) under UV-light illumination.  相似文献   

17.
A simple galvanic displacement reaction for direct growth of Ag nanostructures on zinc substrate is developed. The effect of additives, including polyvinylpyrrolidone (PVP), KI and cetyltrimethylammonium bromide (CTAB), on the morphologies of Ag nanostructure is investigated in detail. Controlling parameters including reaction time and reaction temperature are examined. X-ray diffraction (XRD), scanning electron microscope (SEM) and UV–vis spectra are used to characterize the structure and morphology of the obtained products. Furthermore, these nanostructures constitute an active substrate material with significant surface-enhanced Raman scattering (SERS) enhancement.  相似文献   

18.
经过简单的水热处理, 以二元阴、 阳离子表面活性剂[十六烷基三甲基溴化铵(CTAB)和十二烷基磺酸钠(SDS)分别作为阳离子表面活性剂和阴离子表面活性剂]为模板剂合成了不同形貌的介孔二氧化硅. 通过调控2种表面活性剂摩尔分数R(R=n(SDS)/[n(SDS)+n(CTAB)]), 合成了多种形貌的介孔二氧化硅. 对合成的不同形貌样品通过扫描电子显微镜(SEM)、 透射电子显微镜(TEM)、 X射线粉末衍射仪(XRD) 及比表面和孔隙分析仪进行了表征. 结果表明, 随着R值从0.01变化到0.50, 介孔二氧化硅的形貌经历了一系列规律性的变化, 出现了二维六方、 层状相和反相堆积的形貌: 在R=0.01~0.18之间, 主要产物为六方相棒状结构, 且长径比随着R值增大而增大; 在R=0.20~0.28之间主要得到空心泡状结构且具有明显的演变过程; 在R=0.32~0.40之间发生了多层囊泡到单层囊泡的结构转变; 当R值超过一定范围时会产生反相堆积的形貌. 分析认为, SDS在加入过程中通过影响堆积参数g影响胶束的形貌变化, 调控了不同形貌介孔二氧化硅的合成. 各阶段产物形貌和R值的变化有直接关系, 可通过改变R值来合成特定形貌的产物.  相似文献   

19.
PbS nanostructures with different morphologies, such as rod-like, belt-like, downy-velvet-flower-like and dendrite-like, were fabricated successfully under varied reaction conditions in aqueous solution at lower temperature by the assistance of surfactant CTAB. Especially, among all the synthesis methods for PbS nanocrystals, this is the first report using basic acetate of lead, which was formed at initial reaction stage, as a precursor to control the crystal nucleation rate. This synthesis method is a promising one to metal sulfide for its easy control, low-cost and large-scale production. X-ray powder diffraction (XRD), transmission electron microscopy (TEM), selected area electron diffraction (SAED), field-emission scanning electron microscopy (FE-SEM) and UV-visible spectrophotometer (UV-vis) were used to characterize the products. A rational mechanism is proposed and three control factors to the crystal directional growth are also concluded.  相似文献   

20.
A mixed system of poly (styrene-alt-maleic acid) (PSMA) and cetyltrimethylammonium bromide (CTAB) was used as a very effective crystal growth modifier to direct the controlled synthesis of CaCO3 crystals with various morphologies and polymorphs. The as-prepared products were characterized with scanning electron microscopy and X-ray diffraction. It was found that the concentrations and relative ratios of PSMA and CTAB in the mixed aqueous solution were turned out to be important parameters for the morphology and polymorph of CaCO3 crystals. Various morphologies of CaCO3 crystals, such as hollow microsphere, peanut and so on, were produced depending on the concentrations and relative ratios of PSMA and CTAB. Moreover, the formation mechanisms of CaCO3 crystals with different morphologies were discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号