首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
Treatment of the [2-Cp-9-tBuNH-closo-2,1,7,9-FeC(3)B(8)H(10)] (1) ferratricarbollide (Cp = eta(5)-C(5)H(5) (-)) with Na(+) C(10)H(8) (-) in 1,2-dimethoxyethane (DME) at room temperature produced an air-sensitive transient anion with a tentatively identified nido-[tBuNH-CpFeC(3)B(8)H(10)](2-) constitution. In-situ reaction of this low-stability ion with [CpFe(CO)(2)I] or [CpFe(CO)(2)](2) generated three violet diferratricarbaboranes identified as paramagnetic subcloso complexes [4,5-Cp(2-)-4,5,1,6,7-Fe(2)C(3)B(8)H(11)] (2; yield 2 %), [4,5-Cp(2-)-4,5,1,7,12-Fe(2)C(3)B(8)H(11)] (3; yield 2 %), and [7-tBuNH-4,5-Cp(2-)-4,5,1,7,12-Fe(2)C(3)B(8)H(10)] (4; yield 14 %). These first representatives of the 13-vertex dimetallatricarbaborane family were characterized by EPR and IR spectroscopy, and mass spectrometry, and their structures were determined by X-ray diffraction analysis.  相似文献   

2.
Ruthenacarborane complexes of formula [3-H-3,3-(PPh3)2-8-L-closo-3,1,2-RuC2B9H10)] (L = SMe2 (2a), SEt2 (2b), S(CH2)4 (2c), SEtPh (2d)) and [1-Me-3-H-3,3-(PPh3)2-8-L-closo-3,1,2-RuC2B9H9)] (L = SMe2 (2e), SEt2 (2f)) were prepared by reaction of the respective monoanionic charge-compensated ligands [10-L-nido-7,8-C2B9H10]- and [7-Me-10-L-nido-7,8-C2B9H9]- with [RuCl2(PPh3)3]. Similary, complexes [3-H-3,3,8-(PPh3)3-closo-3,1,2-RuC2B9H10)] (4a) and [3-H-3,3-(PPh3)2-8-PPh2Me-closo-3,1,2-RuC2B9H10)] (4b) were prepared from the corresponding phosphonium ligands. The reaction is done in one pot by reacting the ligand with the Ru(II) complex in a 1.5:1 ratio. All compounds have been fully characterized by multinuclear NMR spectroscopy, and the molecular structures for 2a and 4a have been elucidated by single-crystal X-ray diffraction analysis. The Ru(II) atom in this complex is on the open face of the monoanionic charge-compensated ligand adopting a pseudooctahedral coordination. Formally, three positions are supplied by the C2B3 open face, two PPh3 groups occupy two other positions, and a hydride fulfills the remaining one. The hydride complexes were generated with no special reagent. They result from a dehalogenation in the presence of ethanol.  相似文献   

3.
The reaction of nido-[7,8,9-PC(2)B(8)H(11)] (1) with [[CpFe(CO)(2)](2)] (Cp=eta(5)-C(5)H(5) (-)) in benzene (reflux, 3 days) gave an eta(1)-bonded complex [7-Fp-(eta(1)-nido-7,8,9,-PC(2)B(8)H(10))] (2; Fp=CpFe(CO)(2); yield 38 %). A similar reaction at elevated temperatures (xylene, reflux 24 h) gave the isomeric complex [7-Fp-(eta(1)-nido-7,9,10-PC(2)B(8)H(10))] (3; yield 28 %) together with the fully sandwiched complexes [1-Cp-closo-1,2,4,5-FePC(2)B(8)H(10)] 4 a (yield 30%) and [1-Cp-closo-1,2,4,8-FePC(2)B(8)H(10)] 4 b (yield 5%). Compounds 2 and 3 are isolable intermediates along the full eta(5)-complexation pathway of the phosphadicarbaborane cage; their heating (xylene, reflux, 24 h) leads finally to the isolation of compounds 4 a (yields 46 and 52%, respectively) and 4 b (yields 4 and 5%, respectively). Moreover, compound 3 is isolated as a side product from the heating of 2 (yield 10%). The structure of compound 4 a was determined by an X-ray structural analysis and the constitution of all compounds is consistent with the results of mass spectrometry and IR spectroscopy. Multinuclear ((1)H, (11)B, (31)P, and (13)C), two-dimensional [(11)B-(11)B]-COSY, and (1)H[(11)B(selective)] magnetic resonance measurements led to complete assignments of all resonances and are in excellent agreement with the structures proposed.  相似文献   

4.
Methyl cations 1-Cp and 1-Cp*, stabilized by the tri-tert-butylphophinimine ligand and either C5H5 or C5Me5, were generated from the neutral dimethyl precursors and [Ph3C]+[B(C6F5)4]-. Reaction of these compounds with H2 resulted in contrasting reactions. For 1-Cp, hydrogenolysis of the Ti-CH3 group led to rapid reduction to Ti(III) and production of a cationic Ti(III) dimer, 2, presumably formed upon loss of H2 from a transiently generated Ti(IV) hydride. Compound 2 was characterized crystallographically and via its cleavage with donor solvents such as THF to form the monomeric [Cp(L)Ti(THF)2]+[B(C6F5)4]-, 3. In contrast, 1-Cp* reacted rapidly with H2 to form a cationic Ti(IV) hydride species, 4, which was resistant to reduction. While only moderately stable in solution under H2, a stable, isolable THF adduct preciptitated upon addition of THF, giving 4.THF, which was fully characterized, including via X-ray crystallography. Naked hydride 4 was very reactive toward haloarene solvents such as bromobenzene, giving the cationic bromide [Cp*(L)TiBr]+[B(C6F5)4]-, 5, which was fully characterized as its THF adduct 5.THF. The contrasting behavior of 1-Cp and 1-Cp* is a result of the greater steric protection and electron donation provided by the Cp* ligand relative to the Cp donor.  相似文献   

5.
The prototype hetero-binuclear complexes containing metal-metal bonds, {CpRh[E2C2(B10H10)]}[Fe(CO)3] (Cp = Cp* = eta 5-Me5C5, E = S(5a), Se(5b); Cp = Cp = eta 5-1,3-tBu2C5H3, E = S(6a), Se(6b)) and {CpCo[E2C2(B10H10)]}[Fe(CO)3] (Cp = Cp* = eta 5-Me5C5, E = S(7a), Se(7b); Cp = Cp = eta 5-C5H5, E = S(8a), Se(8b)) were obtained from the reactions of 16-electron complexes CpRh[E2C2(B10H10)] (Cp = Cp*, E = S(1a), Se(1b); Cp = Cp, E = S(2a), Se(2b)), CpCo[E2C2(B10H10)] (Cp = Cp*, E = S(3a), Se(3b); Cp = Cp, E = S(4a), Se(4b)) with Fe(CO)5 in the presence of Me3NO. The molecular structures of {Cp*Rh[E2C2(B10H10)]}[Fe(CO)3] (E = S(5a), Se(5b)), {CpRh[S2C2(B10H10)]}[Fe(CO)3] (6a) {Cp*Co[S2C2(B10H10)]}[Fe(CO)3] (7a) and {CpCo[S2C2(B10H10)]}[Fe(CO)3] (8a) have been determined by X-ray crystallography. All these complexes were characterized by elemental analysis and IR and NMR spectra.  相似文献   

6.
Reaction of [Cp*TaCl4] (Cp*=eta5-C5Me5) with a sixfold excess of LiBH(4)thf followed by BH3thf in toluene at 100 degrees C led to the isolation of hydrogen-rich metallaboranes [(Cp*Ta)2B4H10] (1), [(Cp*Ta)2B5H11] (2), [(Cp*Ta)2B5H10(C6H4CH3)] (3), and [(Cp*TaCl)2B5H11] (4) in modest yield. Compounds 1-3 are air- and moisture-sensitive but 4 is reasonably stable in air. Their structures are predicted by the electron-counting rules to be a bicapped tetrahedron (1), bicapped trigonal bipyramids (2, 3), and a nido structure based on a closo dodecahedron 4. Yellow tantalaborane 1 has a nido geometry with C2v symmetry and is isostructural with [(Cp*M)2B4H8] (M=Cr and Re); whereas 2 and 3 are C3v-symmetric and isostructural with [(Cp*M)2B5H9] (M=Cr, Mo, W) and [(Cp*ReH)2B5Cl5]. The most remarkable feature of 4 is the presence of a hydride ligand bridging the ditantalum center to form a symmetrical tantalaborane cluster with a long Ta--Ta bond (3.22 A). Cluster 4 is a rare example of electronically unsaturated metallaborane containing four TaHB bonds. All these new metallaboranes have been characterized by mass spectrometry, 1H, 11B, and 13C NMR spectroscopy, and elemental analysis, and the structural types were unequivocally established by crystallographic analysis of 1-4.  相似文献   

7.
8.
The reaction of Cp*RhCl2(PPh3) 1 with 1-alkyne and H2O in the presence of KPF6 afforded the alkenyl ketone complex [Cp*Rh(PPh3)(CPh=CHCOCH2R)](PF6) [R = p-tolyl (3a), R = Ph (3b)], whereas Cp*IrCl2(PPh3) 2 or [(eta 6-C6Me6)RuCl2(PPh3) gave the corresponding [Cp*IrCl(CO)(PPh3)](PF6) 5a and [(eta 6-C6Me6)RuCl(CO)(PPh3)](PF6).  相似文献   

9.
The 16-electron half-sandwich complex [Cp*Ir[S2C2(B10H10)]] (Cp* = eta5-C5Me5) (1a) reacts with [[Rh(cod)(mu-Cl)]2] (cod = cycloocta-1,5-diene, C8H12) in different molar ratios to give three products, [[Cp*Ir[S2C2(B10H9)]]Rh(cod)] (2), trans-[[Cp*Ir[S2C2(B10H9)]]Rh[[S2C2(B10H10)]IrCp*]] (3), and [Rh2(cod)2[(mu-SH)(mu-SC)(CH)(B10H10)]] (4). Complex 3 contains an Ir2Rh backbone with two different Ir-Rh bonds (3.003(3) and 2.685(3) angstroms). The dinuclear complex 2 reacts with the mononuclear 16-electron complex 1a to give 3 in refluxing toluene. Reaction of 1a with [W(CO)3(py)3] (py = C5H5N) in the presence of BF3.EtO2 leads to the trinuclear cluster [[Cp*Ir[S2C2(B10H10)]]2W(CO)2] (5) together with [[Cp*Ir(CO)[S2C2(B10H10)]]W(CO)5] (6), and [Cp*Ir(CO)[S2C2(B10H10)]] (7). Analogous reactions of [Cp*Rh[S2C2(B10H10)]] (1 b) with [[Rh(cod)(mu-Cl)]2] were investigated and two complexes cis-[[Cp*Rh[S2C2(B10H10)]]2Rh] (8) and trans-[[Cp*Rh[S2C2(B10H10)]]2Rh] (9) were obtained. In refluxing THF solution, the cisoid 8 is converted in more than 95 % yield to the transoid 9. All new complexes 2-9 were characterized by NMR spectroscopy (1H, 11B NMR) and X-ray diffraction structural analyses are reported for complexes 2-5, 8, and 9.  相似文献   

10.
From reaction of [(Cp*Ir)2HxCl(4-x)] (x=1, 0) and LiBH4, arachno-[[Cp*IrH2]B3H7](1) is produced in moderate yield concurrently with [Cp*IrH4]. In contrast, reaction of [(Cp*Ir)2H2Cl2] with LiBH4 results in arachno-[[Cp*IrH]2(mu-H)B2H5] (3) in high yield at room temperature but a mixture of 1 and [[Cp*IrH]2(mu-H)BH4] (2) at 0 degrees C. BH3 x THF converts 1 to arachno-[(Cp*IrHB4H9] (4) and 2 to 3 with 1 as a minor product. Further, reaction of 3 with excess of BH3 x THF results in formation of nido-[[Cp*Ir]2-(mu-H)B4H7] (6) formed by loss of H2 from the intermediate arachno-[[Cp*IrH]2B4H8] (5). Reaction of 1 with [Co2(CO)8] permits the isolation of two metallaboranes, arachno-[[Cp*Ir(CO)]-B3H7] (7) and nido-[1-[Cp*Ir]-2,3-Co2-(CO)4(mu-CO)B3H7] (8). Treatment of 4 with [Co2(CO)8] gives only one single mixed-metal metallaborane nido-[1-[Cp*Ir]-2-Co(CO)3B4H7 (9) in high yield. Finally, pyrolysis of 8 results in loss of hydrogen and formation of pileo-[1-[Cp*Ir]-2,3-Co2(CO)5B3H5] (10) with a BH-capped square-pyramidal structure. With kinetic control rational synthesis of a variety metallaboranes has been achieved by varying the number of chlorides in the monocyclopentadienylmetal halide dimer, reaction temperature, types of monoborane, and metal fragment sources.  相似文献   

11.
The reinvestigation of an early synthesis of heterometallic cubane-type clusters has led to the isolation of a number of new clusters which have been characterized by spectroscopic and crystallographic techniques. The thermolysis of [(Cp*Mo)(2)B(4)H(4)E(2)] (1: E = S; 2: E = Se; Cp* = η(5)-C(5)Me(5)) in presence of [Fe(2)(CO)(9)] yielded cubane-type clusters [(Cp*Mo)(2)(μ(3)-E)(2)B(2)H(μ-H){Fe(CO)(2)}(2)Fe(CO)(3)], 4 and 5 (4: E = S; 5: E = Se) together with fused clusters [(Cp*Mo)(2)B(4)H(4)E(2)Fe(CO)(2)Fe(CO)(3)] (8: E = S; 9: E = Se). In a similar fashion, reaction of [(Cp*RuCO)(2)B(2)H(6)], 3, with [Fe(2)(CO)(9)] yielded [(Cp*Ru)(2)(μ(3)-CO)(2)B(2)H(μ-H){Fe(CO)(2)}(2)Fe(CO)(3)], 6, and an incomplete cubane cluster [(μ(3)-BH)(3)(Cp*Ru)(2){Fe(CO)(3)}(2)], 7. Clusters 4-6 can be described as heterometallic cubane clusters containing a Fe(CO)(3) moiety exo-bonded to the cubane, while 7 has an incomplete cubane [Ru(2)Fe(2)B(3)] core. The geometry of both compounds 8 and 9 consist of a bicapped octahedron [Mo(2)Fe(2)B(3)E] and a trigonal bipyramidal [Mo(2)B(2)E] core, fused through a common three vertex [Mo(2)B] triangular face. In addition, thermolysis of 3 with [Mn(2)(CO)(10)] permits the isolation of arachno-[(Cp*RuCO)(2)B(3)H(7)], 10. Cluster 10 constitutes a diruthenaborane analogue of 8-sep pentaborane(11) and has a structural isomeric relationship to 1,2-[{Cp*Ru}(2)(CO)(2)B(3)H(7)].  相似文献   

12.
Reduction of Cp*WCl4 afforded the metalated complex (eta6-C5Me4CH2)(dmpe)W(H)Cl (1) (Cp* = C5Me5, dmpe = 1,2-bis(dimethylphosphino)ethane). Reactions with CO and H(2) suggested that 1 is in equilibrium with the 16-electron species [Cp(dmpe)WCl], and 1 was also shown to react with silanes R2SiH2 (R2 = Ph2 and PhMe) to give the tungsten(IV) silyl complexes Cp*(dmpe)(H)(Cl)W(SiHR2) (6a, R2 = Ph2; 6b, R2 = PhMe). Abstraction of the chloride ligand in 1 with LiB(C6F5)4 gave a reactive species that features a doubly metalated Cp ligand, [(eta7-C5Me3(CH2)2)(dmpe)W(H)2][B(C6F5)4] (4). In its reaction with dinitrogen, 4 behaves as a synthon for the 14-electron fragment [Cp*(dmpe)W]+, to give the dinuclear dinitrogen complex ([Cp*(dmpe)W]2(micro-N2)) [B(C6F5)4]2 (5). Hydrosilanes R2SiH2 (R2 = Ph2, PhMe, Me2, Dipp(H); Dipp = 2,6-diisopropylphenyl) were shown to react with 4 in double Si-H bond activation reactions to give the silylene complexes [Cp*(dmpe)H2W = SiR2][B(C6F5)4] (8a-d). Compounds 8a,b (R2 = Ph2 and PhMe, respectively) were also synthesized by abstraction of the chloride ligands from silyl complexes 6a,b. Dimethylsilylene complex 8c was found to react with chloroalkanes RCl (R = Me, Et) to liberate trialkylchlorosilanes RMe2SiCl. This reaction is discussed in the context of its relevance to the mechanism of the direct synthesis for the industrial production of alkylchlorosilanes.  相似文献   

13.
Naphthalene and anthracene transition metalates are potent reagents, but their electronic structures have remained poorly explored. A study of four Cp*-substituted iron complexes (Cp* = pentamethylcyclopentadienyl) now gives rare insight into the bonding features of such species. The highly oxygen- and water-sensitive compounds [K(18-crown-6){Cp*Fe(η(4)-C(10)H(8))}] (K1), [K(18-crown-6){Cp*Fe(η(4)-C(14)H(10))}] (K2), [Cp*Fe(η(4)-C(10)H(8))] (1), and [Cp*Fe(η(4)-C(14)H(10))] (2) were synthesized and characterized by NMR, UV-vis, and (57)Fe M?ssbauer spectroscopy. The paramagnetic complexes 1 and 2 were additionally characterized by electron paramagnetic resonance (EPR) spectroscopy and magnetic susceptibility measurements. The molecular structures of complexes K1, K2, and 2 were determined by single-crystal X-ray crystallography. Cyclic voltammetry of 1 and 2 and spectroelectrochemical experiments revealed the redox properties of these complexes, which are reversibly reduced to the monoanions [Cp*Fe(η(4)-C(10)H(8))](-) (1(-)) and [Cp*Fe(η(4)-C(14)H(10))](-) (2(-)) and reversibly oxidized to the cations [Cp*Fe(η(6)-C(10)H(8))](+) (1(+)) and [Cp*Fe(η(6)-C(14)H(10))](+) (2(+)). Reduced orbital charges and spin densities of the naphthalene complexes 1(-/0/+) and the anthracene derivatives 2(-/0/+) were obtained by density functional theory (DFT) methods. Analysis of these data suggests that the electronic structures of the anions 1(-) and 2(-) are best represented by low-spin Fe(II) ions coordinated by anionic Cp* and dianionic naphthalene and anthracene ligands. The electronic structures of the neutral complexes 1 and 2 may be described by a superposition of two resonance configurations which, on the one hand, involve a low-spin Fe(I) ion coordinated by the neutral naphthalene or anthracene ligand L, and, on the other hand, a low-spin Fe(II) ion coordinated to a ligand radical L(?-). Our study thus reveals the redox noninnocent character of the naphthalene and anthracene ligands, which effectively stabilize the iron atoms in a low formal, but significantly higher spectroscopic oxidation state.  相似文献   

14.
Ligand substitution of RuCl2[P(C6H5)3]3 and Cp*RuCl(isoprene) (Cp*=1,2,3,4,5-pentamethylcyclopentadienyl) complexes with hydroxymethylphosphines was investigated to develop new catalyst systems for CO2 hydrogenation. A reaction of P(C6H5)2CH2OH with RuCl2[P(C6H5)3]3 in CH2Cl2 gave Ru(H)Cl(CO)[P(C6H5)2CH2OH]3 (1), which was characterized by NMR spectroscopy and X-ray crystallographic analysis. An isotope labeling experiment using P(C6H5)213CH2OH indicated that the carbonyl moiety in complex 1 originated from formaldehyde formed by degradation of the hydroxymethylphosphine. Elimination of formaldehyde from PCy2CH2OH (Cy=cyclohexyl) was also promoted by treatment of RuCl2[P(C6H5)3]3 in ethanol to give RuCl2(PHCy2)4 under mild conditions. On the other hand, the substitution reaction using Cp*RuCl(isoprene) with the hydroxymethylphosphine ligands proceeded smoothly with formation of Cp*RuCl(L)2 [2a-2c; L=P(C6H5)2CH2OH, PCy(CH2OH)2, and P(CH2OH)3] in good yields. The isolable hydroxymethylphosphine complexes 1 and 2 efficiently catalyzed the hydrogenative amidation of supercritical carbon dioxide (scCO2) to N,N-dimethylformamide (DMF).  相似文献   

15.
The 16-electron half-sandwich rhodium complex [Cp*Rh{E2C2(B10H10)}] [Cp* = eta5-C5Me5, E = S (1a), Se (1b)] [Cp*Rh{E2C2(B10H10)} = eta5-pentamethylcyclopentadienyl[1,2-dicarba-closo-dodecaborane(12)-dichalcogenolato]rhodium] reacted with Mo(CO)3(py)3 in the presence of BF3.Et2O in THF solution to afford the {Cp*Rh[E2C2(B10H10)]}2Mo(CO)2 (E = S (3a); Se (3b)), {Cp*Rh[S2C2(B10H10)]}{Mo(CO)2[S2C2(B10H10)]} (4). The voluminous di-tert-butyl substituted Cp half-sandwich rhodium complex [Cp'Rh{E2C2(B10H10)}] [E = S (2a), Se (2b)] [CpRh{E2C2(B10H10)} = eta5-(1,3-di(tert-butyl)cyclopentadienyl-[1,2-dicarba-closo-dodecaborane(12)-dichalcogenolato]rhodium) reacted with W(CO)3(py)3 in the presence of BF3.Et2O in THF solution to give the {Cp'Rh[S2C2(B10H10)]}{W(CO)2[S2C2(B10H10)]} (5) and {Cp'Rh[Se2C2(B10H10)]}(mu-CO)[W(CO)3] (6), respectively. The complexes have been fully characterized by IR and NMR spectroscopy as well as by elemental analyses. The X-ray crystal structures of the complexes 3-6 are reported.  相似文献   

16.
The synthesis of half-sandwich transition-metal complexes containing the Cab(N) and Cab(N,S) chelate ligands (HCab(N) = HC2B10H10CH2C5H4N (1), LiCab(N,S) = LiSC2B10H10CH2C5H4N (4)) is described. Compounds 1 and 4 were treated with chloride-bridged dimers [{Ir(Cp*)Cl2}2] (Cp* = eta5-C5Me5), [{Ru(p-cymene)Cl2}2] and [{Rh(Cp*)Cl2}2] to give half-sandwich complexes [Ir(Cp*)Cl(Cab(N))] (2), [Ru(p-cymene)Cl(Cab(N))] (3), and [Rh(Cp*)Cl(Cab(N,S))] (5), respectively. Addition reaction of LiCab(S) (Cab(S) = SC2(H)B10H10) to the rhodium complex 5 yields [Rh(Cp*)(Cab(S))(Cab(N,S))] (6). All the complexes were characterized by IR and NMR spectroscopy, and by elemental analysis. In addition, X-ray structure analyses were performed on complexes 2, 3, 5, and 6, in which the potential C,N- and N,S-chelate ligands were found to coordinate in a bidentate mode. The carborane complex 2 shows catalytic activities up to 3.7x10(5) g PE mol(-1) Ir h(-1) for the polymerization of ethylene in the presence of methylaluminoxane (MAO) as cocatalyst. The polymer obtained from this homogeneous catalytic reaction has a spherical morphology. Catalytic activities and the molecular weight of polyethylene have been investigated for various reaction conditions.  相似文献   

17.
Photochemical decarbonylation of [Mo2Cp2(mu-PR*)(CO)4] (Cp = eta5-C5H5; R* = 2,4,6-C6H2tBu3) gives [Mo2Cp2(mu-kappa1:kappa1,eta6-PR*)(CO)2], which shows the first example of a remarkable 10-electron donor arylphosphinidene ligand which bridges two Mo atoms through its phosphorus atom while being pi-bonded to one Mo center through the six carbon atoms of the aryl ring. This causes a severe pyramidal distortion of the P-bound C atom. The complex adds CO to give [Mo2Cp2(mu-kappa1:kappa1,eta4-PR*)(CO)3], which has an 8-electron donor PR* ligand, and then the parent complex [Mo2Cp2(mu-PR*)(CO)4]. Protonation of [Mo2Cp2(mu-kappa1:kappa1,eta6-PR*)(CO)2] gives the hydride [Mo2Cp2(H)(mu-kappa1:kappa1,eta6-PR*)(CO)2]+, which undergoes P-C bond cleavage and hydride migration, affording the phosphido cation [Mo2Cp2(mu-P)(eta6-R*H)(CO)2]+.  相似文献   

18.
Reaction of [Cp*IrCl2]2 (1) with dpmp in the presence of KPF6 afforded a binuclear complex [Cp*IrCl(dpmp-P1,P2;P3)IrCl2Cp*](PF6) (2) (dpmp =(Ph2PCH2)2PPh). The mononuclear complex [Cp*IrCl(dpmp-P1,P2)](PF6) (4) was generated by the reaction of [Cp*IrCl2(BDMPP)](BDMPP =PPh[2,6-(MeO)2C6H3]2) with dpmp in the presence of KPF6. These mono- and binuclear complexes have four-membered ring structures with a terminal and a central P atom of the dpmp ligand coordinated to an iridium atom as a bidentate ligand. Since there are two chiral centers at the Ir atom and a central P2 atom, there are two diastereomers that were characterized by spectrometry. Complexes anti-4 and syn-4 reacted with [Cp*RhCl2]2 or [(C6Me6)RuCl2]2, giving the corresponding mixed-metal complexes, anti- and syn- [Cp*IrCl(dppm-P1,P2;P3)MCl2L](PF6) (6: M = Rh, L = Cp*; 7: M = Ru, L = C6Me6). Treatment with AuCl(SC4H8) gave tetranuclear complexes, anti- and syn-8 [[Cp*IrCl(dppm-P1,P2;P3)AuCl]2](PF6)2 bearing an Au-Au bond. Reaction of anti- with PtCl2(cod) generated the trinuclear complex anti-9, anti-[[Cp*IrCl(dppm-P1,P2;P3)]2PtCl2](PF6)2. These reactions proceeded stereospecifically. The P,O-chelated complex syn-[Cp*IrCl(BDMPP-P,O)] (syn-10)(BDMPP-P,O = PPh[2,6-(MeO)2C6H3][2-O-6-(MeO)C6H3]2) reacted with dpmp in the presence of KPF6, generating the corresponding anti-complex as a main product as well as a small amount of syn-complex, [Cp*Ir(BDMPP-P,O)(dppm-P1)](PF6) (11). The reaction proceeded preferentially with inversion. The reaction processes were investigated by PM3 calculation. anti- was treated with MCl2(cod), giving anti-[Cp*Ir(BDMPP-P,O)(dppm-P1;P2,P3)MCl2](PF6)(14: M = Pt; 15: M = Pd), in which the MCl2 moiety coordinated to the two free P atoms of anti-11. The X-ray analyses of syn-2, anti-2, anti-4, anti-8 and anti-11 were performed.  相似文献   

19.
Building on earlier work that showed the formation of [1-Cp*-2,2,2-(CO)3-2-THF-nido-1,2-IrMoB(4)H(8)], 2, from the reaction of [1-Cp*-arachno-1-IrB(4)H(10)], 1, with (arene)Mo(CO)3, the stoichiometric mechanism for the generation of [1-Cp*-5,6,7,8-(R)4-nido-1,5,6,7,8-IrC(4)B(3)H(3)], 8, from the reaction of 2 with RCCR, R = Me, Ph, has been identified. For R = Me, the major product in solution is [1-Cp*-5,6,7,8-(CH3)4-closo-1,5,6,7,8-IrC(4)B(3)H(3)Mo(CO)3], 7, which is in equilibrium with 8. The equilibrium 8 + Mo(THF)3(CO)3 <==> 7 + 3THF is characterized by DeltaH = 8 kcal/mol and DeltaS = 34 cal/mol K. Density functional theory calculations carried out on 7 indicate that the Mo(CO)3 moiety is weakly bound to the cluster mainly through Mo-C rather than Mo-B interactions. Under alkyne deficient conditions, the product [1-Cp*-2,2,2-(CO)3(mu-CO)-3,4-(CH3)2-closo-1,2,3,4-IrMoC(2)B(3)H(3)], 6, can be isolated. Solid-state structures of 1 and 2 have been reported previously, and those of 6, 7, and 8, R = Me, Ph, are reported here. The evolution of products with time was monitored by 1H and 11B NMR and showed the formation and decay of two additional species which have been identified as the structural isomers [1-Cp*-7,7,7-(CO)3-7-THF-2,3-(CH3)2-nido-1,7,2,3-IrMoC(2)B(3)H(5)], 4, and [5-Cp*-7,7,7-(CO)3-7-THF-2,3-(CH3)2-nido-5,7,2,3-IrMoC(2)B(3)H(5)], 5, with the metals nonadjacent in 4 and adjacent in 5. Circumstantial evidence suggests that 4 is the precursor to 5 and 5 is the precursor to both 6 and 7. Cluster 2 also is a catalyst or catalyst precursor for the isomerization of olefins, namely, hex-1-ene to cis-hex-2-ene and tetramethyl allene to 2,4-dimethylpenta-1,3-diene. These novel results also establish that [1-Cp*-2,2,2-(CO)3-2-(alkyne)-nido-1,2-IrMoB(4)H(8)], 3, forms from 2 and constitutes a logical precursor to 4. The entire process, 1 + 2alkyne = 8 + BH3 + 2H2, which is promoted by (arene)Mo(CO)3, constitutes an explicit example of a transition-metal-facilitated process analogous to metal-facilitated organic transformations observed in organometallic chemistry.  相似文献   

20.
The reaction of the Tl+ salt of the [nido-7,8,9-P2CB8H9]- anion (1-) with [CpFe(CO)2I](Cp =eta(5)-C5H5) in refluxing mesitylene for 12 h gives mixed-sandwich [1-Cp-closo-1,2,3,4-FeP2CB8H9] (2) (yield 63%). Reaction of the PPh4+ salt of the isomeric [nido-7,8,10-P2CB8H9]- anion 3- with [CpFe(CO)2I] in refluxing mesitylene gives [1-Cp-closo-1,2,3,5-FeP2CB8H9]4 (yield 56%), isomeric with 2. Compound 4 also results (yield 92%) from the sublimation of 2 under argon at ca. 350 degrees C. The constitution of all compounds is established by mass spectrometry, IR spectroscopy and multinuclear NMR spectroscopy (1H, 11B, 31P, and 13C; two-dimensional [11B-11B]-COSY, and 1H- 11B(selective)), further confirmed in the case of 4 by a single-crystal X-ray diffraction analysis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号