首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
The absorption and fluorescence spectra of N-nonyl acridine orange are determined at room temperature (298 K) in cyclohexane, benzene, carbon tetrachloride, chloroform, chlorobenzene and dichloromethane. The ground state of dipole moment was obtained by impedance measurements using Guggenheim-Debeye's method. The experimental excited state dipole moment of N-nonyl acridine orange was determined using Bakhshiev's and Kawski-Chamma-Viallet's formulae and solvent polarity parameter proposed by Reichardt. These experimental results were completed with theoretical results using quantum chemical methods. The experimental (muexp=10.76 D) and theoretical (mucal=9.9 D) dipole moments in the ground and excited state (muexp*=14.56 D) were compared.  相似文献   

2.
The ground state (mu(g)) and excited state (mu(e)) dipole moments of 15 hemicyanine dyes were studied at room temperature. They were estimated from solvatochromic shifts of the absorption and the fluorescence spectra as function of the solvent dielectric constant (varepsilon) and refractive index (n). In this paper we applied the Stokes shift phenomena not only for the determination of the difference in the dipole moment of excited state and ground state, but to determine the value of polarizability alpha as well. The obtained results show that excited state dipole moments of hemicyanine dyes are in the range from 5 to 15 Debye, and the difference between the excited and ground state dipole moments vary from 1 to 7 Debye. The excited and ground state dipole moments difference (mu(e)-mu(g)) obtained for selected dyes are positive. It means that the excited states of the dyes under the study are more polar than the ground state ones. Additionally, the value of both polarizability (alpha) and the Onsager radius (a) of each investigated hemicyanine dye molecule are determined, and the ratio of alpha/a(3) for each dye were calculated, which oscillate from 0.29 to 5.21. The increase in dipole moment has been explained in terms of the nature of excited state and its resonance structure.  相似文献   

3.
CNDO/s-CI and VE-PPP methods have been employed to calculate the dipole moments of the bases of nucleic acids in the ground and excited states. A component analysis in terms of μhyb(σ), μch and μπ has been done using the CNDO/s-CI method and these results have been compared with those obtained by the CNDO/2 and IEHT methods. It is observed that while the CNDO/2 and CNDO/s-CI methods give almost the same total dipole moments, component-wise their predictions are very different.Dipole moments of the molecules have also been studied for the lowest excited singlet and triplet π* ← π states. It is observed that the conventional method of calculating dipole moments using changes of only the net charges in the excited state does not give correct results for uracil and thymine, for which experimental results are available. Considering deformed non-planar excited state geometries for these molecules, the observed excited state dipole moments have been explained. A method has been suggested to include the effects of non-planarity while calculating the properties of a complex molecule in a π* ← π excited state. For adenine, guanine and cytosine, the excited state dipole moments are found to be smaller than the ground state values.  相似文献   

4.
Electronic absorption and fluorescence spectra of the acridine dye 2,7-dimethyl-9-(ditolylamino)acridine were studied at room temperature in solvents of different polarity (hexane, toluene, chloroform, tetrahydrofuran, acetonitrile, etc.). The obtained data on the shift of the fluorescence band maximum depending on the solvent polarity were used for the estimation of the dipole moment of 2,7-dimethyl-9-ditolylaminoacridine in the ground and the first excited state.  相似文献   

5.
The electronic absorption spectra of eight substituted acetic acids have been measured at room temperature in several solvents. The ground state dipole moments are evaluated experimentally for these molecules. These ground state values are used in conjunction with the spectral results to evaluate their first electronically excited state dipole moments. For all the molecules investigated here the dipole moments in the excited state are higher than their ground state values.  相似文献   

6.
The excited state (S1) dipole moment of m-AMSA (1), an acridine derivative with antitumor activity, was determined from solvatochromic shifts of the lowest energy absorption band in several organic solvents. The effect of the solute shape and the values of polarizability on the determined change of dipole moment between ground and excited state was discussed. The dipole moments in S0 and S1 state were calculated in gas phase with semiempirical quantum-chemical and DFT and CIS methods and in solvents with SM5.4A solvation model and compared with values obtained experimentally. All the results show that the dipole moment of compound 1 in the excited state is higher than that in the ground state. These methods quite well predict the values of Deltamicro between two states of an investigated compound.  相似文献   

7.
The spectroscopic and photophysical properties of N-nonyl acridine orange - a metachromatic dye useful as a mitochondrial probe in living cells - are reported in water and microheterogeneous media: anionic sodium dodecylsulfate (SDS), cationic cetyltrimethylammonium bromide (CTAB) and neutral octylophenylpolyoxyethylene ether (TX-100). The spectral changes of N-nonyl acridine orange were observed in the presence of varying amount of SDS, CTAB and TX-100 and indicated formation of a dye-surfactant complex. The spectral changes were also regarded to be caused by the incorporation of dye molecules to micelles. It was proved by calculated values K(b) and f in the following order: K(bTX-100)>K(bCTAB)>K(bSDS) and f(TX-100)>f(CTAB)>f(SDS). NAO binds to the micelle regardless the micellar charge. There are two types of interactions between NAO and micelles: hydrophobic and electrostatic. The hydrophobic interactions play a dominant role in binding of the dye to neutral TX-100. The unexpected fact of the binding NAO to cationic CTAB can be explained by a dominant role of hydrophobic interactions over electrostatic repulsion. Therefore, the affinity of NAO to CTAB is smaller than TX-100. Electrostatic interactions play an important role in binding of NAO to anionic micelles SDS. We observed a prolonged fluorescence lifetime after formation of the dye-surfactant complex tau(SDS)>tau(TX-100)>tau(CTAB)>tau(water), the dye being protected against water in this environment. TX-100 is found to stabilize the excited state of NAO which is more polar than the ground state. Spectroscopic and photophysical properties of NAO will be helpful for a better understanding of the nature of binding and distribution inside mammalian cells.  相似文献   

8.
Complex (experimental and quantum-chemical) investigation of the spectral and luminescent properties of acridine, 9-aminoacridine, 2,7-dimethyl-9-ditolylaminoacridine, and their protonated forms was performed. The electronic absorption and fluorescence spectra of the acridine dyes were studied at room temperature in ethanolic solutions at different pH values and in other solvents of different chemical nature and polarity. The energies of the excited states, the deactivation rate constants for the excited states, and the dipole moments are presented, which were obtained by calculations using the method of intermediate neglect of the differential overlap with special spectroscopic parameterization.  相似文献   

9.
Abstract— The effect of solvent polarity on the electronic absorption and fluorescence properties of neutral red (NR), a phenazine-based dye of biological importance has been investigated in several neat and mixed solvents. An unusual dual solvatochromic behavior has been observed that reveals the existence of two closely spaced electronic excited states in NR. In low-polarity solvents the fluorescence of the NR is mainly emitted from the localized excited state, whereas in high-polarity solvents the emission from the charge transfer state dominates. The dipole moments of the localized and charge transfer states of NR have been estimated from the solvatochromic shifts. The dipole moment of the localized excited state (4.8 D) is only slightly higher than that of the ground state (2.0 D), while that of the charge transfer state is drastically higher (17.5 D). Fluorescence quantum yields and the life-times of NR have been determined in different solvents and correlated with the solvatochromic shifts.  相似文献   

10.
Absorption and fluorescence emission of 4 and 7 substituted coumarins viz. C 440, C 490, C 485 and C 311 have been studied in various polar and non-polar organic solvents. These coumarin dyes are substituted with alkyl, amine and fluorine groups at 4- and 7-positions. They give different absorption and emission spectra in different solvents. The study leads to a possible assignment of energy level scheme for such coumarins including the effect on ground state and excited state dipole moments due to substitutions. Excited state dipole moments of these dyes are calculated by solvetochromic data experimentally and theoretically these are calculated by PM 3 method. The dipole moments in excited state, for all molecules investigated here, are higher than the corresponding values in the ground state. The increase in dipole moment has been explained in terms of the nature of excited state and resonance structure.  相似文献   

11.
Absorption and fluorescence emission spectra of coumarins 6 and 7 were recorded in solvents with different solvent parameters, viz., dielectric constant epsilon and refractive index n. The fluorescence lifetime of these dyes were measured in butanol at higher values of viscosity over temperature. Experimental ground and excited state dipole moments are determined by means of solvatochromic shift method and also the excited state dipole moments are determined in combination with ground state dipole moments. It was determined that dipole moments of the excited state were higher than those of the ground state in both the molecules.  相似文献   

12.
Two Schiff bases were synthesized by reaction of 2-(4'-aminophenyl)benzoxazole derivatives with 4-N,N-diethylaminobenzaldehyde. UV-visible (UV-vis) and steady-state fluorescence in solution were applied in order to characterize its photophysical behavior. The Schiff bases present absorption in the UV region with fluorescence emission in the blue-green region, with a large Stokes' shift. The UV-vis data indicates that each dye behaves as two different chromophores in solution in the ground state. The fluorescence emission spectra of the dye 5a show that an intramolecular proton transfer (ESIPT) mechanism takes place in the excited state, whereas a twisted internal charge transfer (TICT) state is observed for the dye 5b. Theoretical calculations were performed in order to study the conformation and polarity of the molecules at their ground and excited electronic states. Using density functional theory (DFT) methods at theoretical levels BLYP/Aug-SV(P) for geometry optimizations and B3LYP/6-311++G(2d,p) for single-point energy evaluations, the calculations indicate that the lowest energy conformations are in all cases nonplanar and that the dipole moments of the excited state relaxed structures are much larger than those of the ground state structures, which corroborates the experimental UV-vis absorption results.  相似文献   

13.
Abstract— The acid-base equilibria of the excited singlet and triplet states of acridine orange (AO) were studied by flash-photolysis and fluorometric methods. The dye is a stronger base in the first excited singlet state (pKs= 13.3) than in the triplet and ground states (pKr= 10.3: pKc, = 10.2); acridine orange follows the trend observed with some other heterocyclic compounds, viz. pKs > pKr= pK,c. At room temperature, an anomalous fluorescence occurs from the dye in basic media: the assignment of this emission is discussed.
The semi-reduced dye was studied as a function of pH. In a large pH range (3–14), only the protolytic equilibrium between the cationic (AOH2+) and the neutral (AOH) radicals was observed; the pK value corresponding to this equilibrium was found to be in the range of pH 5–6.  相似文献   

14.
Electronic absorption, excitation and fluorescence spectra of fluorenone and 4-hydroxyfluorenone were recorded at room temperature in several aprotic solvent of varying polarities. The ground (mu(g)) and excited (mu(e)) state dipole moments of both molecules were estimated from solvatochromic shifts of absorption and fluorescence spectra as a function of the dielectric constant (epsilon) and refractive index (n). These experimental results were completed with theoretical results of quantum chemical calculations (AM1). The experimental and theoretical dipole moments in the ground state were compared. It was determined that dipole moments of excited state were higher than those of the ground state for both molecules.  相似文献   

15.
The absorption spectra and excited state dipole moments of four differently substituted fulvenes have been investigated both experimentally and computationally. The results reveal that the excited state dipole moment of fulvenes reverses in the first excited singlet state when compared to the ground state. The oppositely polarized electron density distributions, which dominate the ground state and the first excited singlet state of fulvenes, respectively, reflect the reversed π-electron counting rules for aromaticity in the two states (4n + 2 vs. 4n, respectively). The results show that substituents indeed influence the polarity of fulvenes in the two states, however, cooperative interactions between the substituents and the fulvene moiety are most pronounced in the ground state.  相似文献   

16.
The dipole moments of the ground and excited states of 4′-(hexyloxy)-4-biphenylcarbonitrile and 4-isothiocyanatophenyl 4-pentylbicyclo [2.2.2] octane-1-carboxylate nematic liquid crystals and their mixtures prepared in chloroform and dichloromethane were studied at room temperature. The dipole moments of the ground states of the all samples were calculated according to the Guggenheim–Smith method. The dipole moments of their excited states were determined with the help of the Lippert equation by measuring the absorption and fluorescence spectra, solvent polarity and refractive index values. It was determined that dipole moments of the excited states were higher than those of the ground states. Moreover, the dipole moments of the ground and excited states of two nematic liquid crystals were also estimated by using molecular mechanic method (Gaussian09 program (DFT/B3LYP 6-31G(dp)). The results obtained are interpreted in detail.  相似文献   

17.
18.
1 INTRODUCTION II-VI semiconductor materials with ZnO as the representative possess wide forbidden gaps and high exciton binding energy, which have paved the way for the study of exciton characters and short wave photo-conducting devices. They present wide appli- cations, such as ultraviolet laser transmitting device, piezoelectric device, optical waveguild and high efficient quantum dot luminous apparatus[1~8]. Re- cently, II-VI semiconductor cluster materials with nano-structure ha…  相似文献   

19.
The geometrical structure of semiconductor clusters including Zn3O3 was optimized by the DFT B3LYP method. With the same basis sets, dipole moments, polarizabilities and second- order hyperpolarizabilities have been calculated and compared with the results obtained by TDDFT B3LYP method combined with sum-over-state (SOS) formula. The calculation results indicate that the dipole moments of the ground state depend on the atom radius and electronegative differences between elements and are their balance point as well. The polarizabilities of the clusters accord with the rule of the corresponding energy transformation from ground to excited state. The results predict an increase of second-order hyperpolarizabilities with increasing the distances between atoms in the clusters as well as a decrease of the polarizabilities and second-order hyperpolarizabilities in the same serial of semiconductor clusters with increasing the dipole moments of the ground states. The changes of dipole moments in ground states are inconsistent with transition moments. Spatial structure, charge transfer and other factors play an important role in composing the transition moments.  相似文献   

20.
Excited-state dipole moments of some hydroxycoumarins, extensively used as laser dyes, have been determined using the solvatochromic method based on the microscopic solvent polarity parameter EN(T). Agreement between experimental and Austin model 1 (AM 1) calculated dipole moment changes has been found to be close in most of the cases. Our results are expected to be quite reliable in view of the fact that the correlation of the solvatochromic Stokes shifts is superior to that obtained using bulk solvent polarity functions. The dipole moments in the excited state, for all the molecules investigated, are higher than the corresponding values in the ground state. The increase in dipole moment upon excitation has been explained in terms of the nature of emitting state and resonance structure.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号