首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Pulse radiolysis has been used to investigate the reaction of hydroxyl radical (·OH) and oxide radical anion (O·−) with 2-aminopurine (2AP), a fluorescent analogue of adenine, in aqueous medium. The second-order rate constant for the reaction of ·OH with 2AP was determined to be 3 × 109 dm3 mol−1s−1 and for the reaction of O·− it was 7.1 × 108 dm3 mol−1s−1. The transient absorption spectrum obtained in the reaction of ·OH at pH 7 has absorption maxima at 370 and 470 nm. The spectrum undergoes a time-dependent transformation at higher time-scale. The intermediate species was found to react with N,N,N′,N′-tetramethyl-p-phenylenediamine (TMPD). The yield of TMPD·+ was calculated in terms of G(TMPD·+) to be 3.3 × 10−7 mol J−1 at pH 7. The ·OH reactions were also carried out at pH 10 and the transient absorption spectra have λ max at 400 and 480 nm. The transient spectra obtained in the reaction of O·− at pH ≈14 have maxima at 400 and 480 nm. The transient intermediate species at pH 7 are assigned to the formation of 2AP-4-OH· (54%), 2AP-5-OH· (7%) and 2AP-8-OH· (39%) based on the spectral evidence and TMPD·+ build-up. Both 2AP-4-OH· and 2AP-5-OH· undergo OH elimination to form a radical cation. At higher pH (pH 10), the dehydration reaction of these OH-adducts leads to a N-centered radical (2AP-N(9)·, 71%). Formation of 2AP-8-OH· (29%) is also proposed at this pH. In the reaction of O·− with 2AP, it is proposed that a similar nitrogen centered 2AP-N(9)· radical is formed by an electron-transfer reaction at N(9).  相似文献   

2.
At near neutral pH (approx. 5.5), the OH-adduct of chlorogenic acid (CGA), formed on pulse radiolysis of N2O-saturated aqueous CGA solutions (λ max = 400 and 450 nm) with k = 9 × 109 dm3 mol−1 s−1, rapidly eliminates water (k = 1 × 103 s−1) to give a resonance-stabilized phenoxyl type of radical. Oxygen rapidly adds to the OH-adduct of CGA (pH 5.5) to form a peroxyl type of radical (k = 6 × 107 dm3 mol−1 s−1). At pH 10.5, where both the hydroxyl groups of CGA are deprotonated, the rate of reaction of · OH radicals with CGA was essentially the same as at pH 5.5, although there was a marked shift in the absorption maximum to approx. 500 nm. The CGA phenoxyl radical formed with more specific one-electron oxidants, viz., Br 2 ·− and N 3 · radicals show an absorption maximum at 385 and 500 nm, k ranging from 1–5.5 × 109 dm3 mol−1 s−1. Reactions of other one-electron oxidants, viz., NO 2 · , NO· and CCl3OO· radicals, are also discussed. Repair rates of thymidine, cytidine and guanosine radicals generated pulse radiolytically at pH 9.5 by CGA are in the range of (0.7–3) × 109 dm3 mol−1 s−1.  相似文献   

3.
Scavenging of reactive oxygen radicals by resveratrol: antioxidant effect   总被引:3,自引:0,他引:3  
Pulse radiolysis of resveratrol was carried out in aqueous solutions at pH ranging from 6.5 to 10.5. The one-electron oxidized species formed by the N3 radicals at pH 6.5 and 10.5 were essentially the same with λmax at 420 nm and rate constant varying marginally (k = (5−6.5) × 109 dm3 mol−1 s−1). The nature of the transients formed by NO2, NO radical reaction at pH 10.5 was the same as that with N3, due to the similarity in decay rates and the absorption maximum. Reaction of OH radical with resveratrol at pH 7 gives an absorption maximum at 380 nm, attributed to the formation of carbon centered radical. The repair rates for the thymidine and guanosine radicals by resveratrol were approx. 1 × 109 dm3 mol−1 s−1, while the repair rate for tryptophan was lower by nearly an order of magnitude (k = 2 × 108 dm3 mol−1 s−1). The superoxide radical anion was scavenged by resveratrol, as well as by the Cu–resveratrol complex with k = 2 × 107 and 1.5 × 109 dm3 mol−1 s−1, respectively. Its reduction potential was also measured by cyclic voltammetry.  相似文献   

4.
Reactions of eaq, OH radicals and H atoms were studied with n-allylthiourea (NATU) using pulse radiolysis. Hydrated electrons reacted with NATU (k = 2.8×109 dm3 mol−1 s−1) giving a transient species which did not have any significant absorption above 300 nm. It was found to transfer electrons to methyl viologen. At pH 6.8, the reduction potential of NATU has been determined to be −0.527 V versus NHE. At pH 6.8, OH radicals were found to react with NATU, giving a transient species having absorption maxima at 400–410 nm and continuously increasing absorption below 290 nm. Absorption at 400–410 nm was found to increase with parent concentration, from which the equilibrium constant for dimer radical cation formation has been estimated to be 4.9×103 dm3 mol−1. H atoms were found to react with NATU with a rate constant of 5 × 109 dm3 mol−1 s−1, giving a transient species having an absorption maximum at 310 nm, which has been assigned to H-atom addition to the double bond in the allyl group. Acetoneketyl radicals reacted with NATU at acidic pH values and the species formed underwent reaction with parent NATU molecule. Reaction of Cl.−2 radicals (k = 4.6 × 109 dm3 mol−1 s−1) at pH 1 was found to give a transient species with λmax at 400 nm. At the same pH, reaction of OH radicals also gave transient species, having a similar spectrum, but the yield was lower. This showed that OH radicals react with NATU by two mechanisms, viz., one-electron oxidation, as well as addition to the allylic double bond. From the absorbance values at 410 nm, it has been estimated that around 38% of the OH radicals abstract H atoms and the remaining 62% of the OH radicals add to the allylic double bond.  相似文献   

5.
Hydroxyl radicals were generated radiolytically in N2O-saturated aqueous solutions of the aminoglycoside antibiotic, gentamycin. Using the pulse radiolysis technique, the rate constant of OH radicals with gentamycin determined was 1.2·109 dm3·mol−1·s−1. Upon.OH attack a transient species with an absorption maximum at 270 nm is observed which decays by second-order kinetics within the solute concentration range of 3.2·10−5 to 1·10−3mol·dm−3. Transient species undergoes transformation to a permanent product absorbing between 260 and 340 nm with maximum absorption at 300 nm. Rate constant of the reaction of bimolecular decay of gentamycin radicals, k (Gen.+Gen.) was found to be ≈ 1.4·107 dm3·mol−1·s−1.  相似文献   

6.
The reaction of the · OH radical with the oxalate ion in an acidic aqueous solution was studied by pulse radiolysis. The rate constant for the reaction of formation of the radical HOOC-COO·(λmax = 250 nm, ɛ = 1800 L mol−1 cm−1) is (5.0±0.5)·107 L mol−1 s−1. In the reaction with the hydrogen ion (k = 1.1·107 L mol−1 s−1), the radical HOOC-COO· is transformed into a nonidentified radical designated arbitrarily as H+(HOOC-COO)· (λmax = 260 nm, ɛ = 4000 L mol−1 cm−1). Published in Russian in Izvestiya Akademii Nauk. Seriya Khimicheskaya, No. 6, pp. 1165–1167, June, 2008.  相似文献   

7.
Reactions of melatonin (N-acetyl-5-methoxytryptamine) with radiolytically generated radicals were studied. Reaction of melatonin with OH radicals is diffusion-controlled (k=1.2·1010 dm3 mol−1·s−1), the main (but not the only one) intermediate being the indolyl-type radical, while the rate constant for the reaction with hydrated electrons isk=4.3·108 dm3·mol−1·s−1. Melatonin is capable of scavenging tert-butanol radicals, while its reactivity towards polymer radicals of poly(acrylic acid) and poly(vinyl pyrrolidone) is very low.  相似文献   

8.
The antitumor mechanism of etoposide (VP-16) is investigated using pulse radiolysis technology. The oxidizing mechanism of VP-16 is studied by sodium persulfate, and the reaction rate constant is 4.04× 109 L· mol-1 · s-1. The electron-transfer between VP-16 and tyrosine is observed and the reaction rate constant is 1.1 - 108 L · mol-1· s-1.  相似文献   

9.
Reaction of hydrated electrons with safranine T (SF+), a phenazine dye useful as sensitizer in photogalvanic cell and the transient semireduced species formed by this reaction have been studied in SDS micellar medium using the technique of pulse radiolysis. Thee aq reaction with SF+ in the micellar environment was only marginally slower (5.1 × 109 dm3 mol−1 s−1) as compared to that in homogeneous aqueous medium (2.2 × 1010 dm3 mol−1 s−1) explicable on the basis of our finding that although a large fraction of the dye gets localized near the micelle Stern layer where the molecule experiences a dielectric.constant of ≈40, a small but significant concentration of the dye exists in the aqueous bulk as charge pair complex with the anionic surfactant monomer (association constant for the formation of the complex being 2.8 × 104 dm3 mol−1). The transient semireduced absorption band observed in the micellar medium showed a red shift of ≈ 50 nm and also the decay of the transient, which was very fast with 2k = 1 × 109 dm3 mol−1 s−1 in aqueous medium, was stable in the SDS micellar medium over a few tens of milliseconds suggesting that the radical is incorporated deeper than the parent molecule in the SDS micelle. The effect of this stability on the photogalvanic conversion needs to be examined.  相似文献   

10.
Using pulse radiolysis, free radicals of ascorbic acid were generated by reactions of the primary radicals H and OH in acidic and basic aqueous solutions. The formation and the decay of several radicals of ascorbic acid were detected by time resolved Fourier transform electron spin resonance within a time interval of 100 ns to 1 ms. The rate constant of addition of H atoms to ascorbic acid (1.3·108 dm3· mol−1·s−1) was directly determined by the change of line width of the low field line of the H atom in the presence of ascorbic acid. The addition of OH radicals to ascorbic acid results in different radical structures, detected by highly resolved Fourier transform ESR spectra.  相似文献   

11.
The kinetics of the reactions of hydroxyl radicals and hydrogen atoms with some aliphatic alcohols in aqueous solutions were studied using pulse radiolysis. Based on the increase in optical absorption in the UV region, the rate constants for the reaction of hydroxyl radicals and hydrogen atoms with methanol, ethanol, 2-propanol ort-butyl alcohol were determined to be 9.0 × 108, 2.2 × 109, 2.0 × 109,6.2×l08 and 1.1 × 106, 1.8 × 107, 5.3 × 107, 2.3 × 105 dm3 mol−1 s−1 respectively. The bimolecular decay rate constants for the alcohol radicals produced in methanol and ethanol were evaluated to be 2.4 × 109 and 1.5 × 109 dm3 mol−1s−1. The values observed are in fairly good agreement with those reported earlier.  相似文献   

12.
The phenyl substituted acridine-1,8-dione (AD) dye reacts with (CH3)2*COH radicals with a bimolecular rate constant of 0.6 × 108 dm3 mol−1 s−1 in acidic aqueous-organic mixed solvent system. The transient optical absorption band (λmax = 465 nm, ɛ = 6.8 × 102 dm3 mol−1 cm−1) is assigned to ADH* formed on protonation of the radical anion. In basic solutions, (CH3)2*COH radicals react with a bimolecular rate constant of 4.6 × 108 dm3 mol−1 s−1 and the transient optical absorption band (λmax = 490 nm, ɛ = 10.4 × 103 dm3 mol−1 cm−1) is assigned to radical anion, AD*, which has a pKa value of 8.0. The reduction potential value of the AD/AD* couple is estimated to be between −0.99 and −1.15 V vs NHE by pulse radiolysis studies. The cyclic voltammetric studies showed the peak potential close to −1.2 V vs Ag/AgCl.  相似文献   

13.
Room temperature rate constants have been determined for reactions ofn-hepatane with Cl/benzene (k=6×107 dm3 mol−1 s−1), Cl/toluene (k=1×107 dm3 mol−1 s−1) and Cl/m-xylene (k=1.7×106 dm3 mol−1 s−1) complexes, respectively, in carbon tetrachloride, using the laser flash photolysis of nitrogen trichloride as a chlorine atom source.  相似文献   

14.
Radiation chemical reactions ofOH, O•−, N3 and e aq t- witho- and m-hydroxycinnamic acids were studied. The second-orderrateconstantsforthereaction ofOH with ortho and meta isomers in buffer solution at pH7 are 3.9±0.2 × 109 and 4.4 ± 0.3 × 109 dm3 mol-1 s-1 respectively. At pH 3 the rate with the ortho isomer was halved (1.6 ± 0.4 × 109 dm3 mol-1 s-1) but it was unaffected in the case of meta isomer (k = 4.2±0.6 × 109dm3mol-1 s-1). The rate constant in the reaction of N3 with the ortho isomer is lower by an order of magnitude (k = 4.9 ± 0.4 × 108 dm3 mol-1s-1). The rates of the reaction of e aq t- with ortho and meta isomers were found to be diffusion controlled. The transient absorption spectrum measured in theOH witho-hydroxycinnamic acid exhibited an absorption maximum at 360 nm and in meta isomer the spectrum was blue-shifted (330 nm) with a shoulder at 390 nm. A peak at 420 nm was observed in the reaction of Obb−with theo-isomer whereas the meta isomer has a maximum at 390 and a broad shoulder at 450 nm. In the reaction of the absorption peaks were centred at 370–380 nm in both the isomers. The underlying reaction mechanism is discussed.  相似文献   

15.
In neutral aqueous solution of (phenylthio)acetic acid, hydroxyl radical is observed to react with a bimolecular rate constant of 7.2 × 10-1 dm3 mols and the transient absorption bands are assigned toOH radical addition to benzene and sulphur with a rough estimated values of 50 and 40% respectively. The reaction of theOH radical with diphenyl sulphide (k = 4.3 × 108 dm3 mol−1 s−1) is observed to take place with formation of solute radical cation, OH-adduct at sulphur and benzene with estimated values of about 12, 28 and 60% respectively. The transient absorption bands observed on reaction ofOH radical, in neutral aqueous solution of 4-(methylthio)phenyl acetic acid, are assigned to solute radical cation (λmax = 550 and 730 nm), OH-adduct at sulphur (λmax = 360 nm) and addition at benzene ring (λmax = 320 nm). The fraction ofOH radical reacting to form solute radical cation is observed to depend on the electron-withdrawing power of substituted group. In acidic solutions, depending on the concentration of acid and electron-withdrawing power, solute radical cation is the only transient species formed on reaction ofOH radical with the sulphides studied.  相似文献   

16.
The radiation chemical redox transformations in solutions of bromides in the presence of minor additives of iodides were studied by pulse radiolysis. The change in the concentrations of the Br and I ions changes the ratio of the formed short-lived radical anions Br2 ·−, BrI·−, and I2 ·−. The spectrum of the mixed radical anion BrI·− contains a broad optical band at 370 nm with ɛ370 = 9650 L mol−1 cm−1. The reduction potential of the BrI·−/Br, I pair is 1.25 V. The rate constants for the forward and backward reactions Br2 ·− + I ⇌ BrI·− + Br are k f = 4.3·109 and k r = 1.0·105 L mol−1 s−1, respectively; for the reactions BrI·− ⇌ Br + I·, k f = 5.7·108 s−1 and k r = 1.0·1010 L mol−1 s−1. Published in Russian in Izvestiya Akademii Nauk. Seriya Khimicheskaya, No. 9, pp. 1787–1792, September, 2008.  相似文献   

17.
Pulse radiolysis technique has been used to characterise the transients formed by the reaction of sulphacetamide with eaq - and subsequently study the electron transfer reactions from the transient to various electron acceptors such as thionine, safranine-T and methyl viologen. The results indicate that the semi-reduced sulphacetamide species are highly reducing in nature as they transfer electrons to various dyes with near diffusion controlled rates (k > 109dm3mol−1s−1) in alkaline and acidic solutions. The influence of oxygen on the decay behaviour of semi-reduced species has been investigated and the results show that O2 reaction with SA is very fast (k = 1.5 × l09dm3mol−1s−1) and leads to the formation of a permanent-coloured product. Reactions of H.atoms resulted in the formation of two transient species whose spectral, kinetic and acid-base characteristics have also been investigated.  相似文献   

18.
The pulse radiolysis technique has been employed to investigate the reaction of DNA-minor-groove ligand bisbenzimidazole Hoechst 33258 with pyrimidine and purine nucleotide-derived radicals. Formation of an N-centred Hoechst-33258 radical is observed. Bimolecular rate constants and the yields of Hoechst-33258 radical have been evaluated. While the rate constant for the reaction of pyrimidine-derived radicals with Hoechst-33258 remained the same (1–2) × 109 dm3 mol−1 s−1, the yields of the Hoechst-33258 radical varied from 25% (5′-cytidine monophosphate) to 75% (5′-guanosine monophosphate) under anoxic conditions. The rate constant values for the reaction of purine-derived radicals with Hoechst-33258, under oxic and anoxic conditions, remained the same whereas with pyrimidine-derived radicals, the rate constant value under oxic conditions was about two orders of magnitude lower than under anoxic conditions. The difference in the yields of Hoechst-33258 radical with various nucleotide-derived radicals suggest the formation of different types of radicals and that the reaction mainly occurs by electron transfer from Hoechst-33258 to the nucleotide radicals.  相似文献   

19.
Due to the nontoxicity and efficient anti-cancer activity, more and more attention has been paid to N-glycoside compounds. Laser photolysis of N-(α-D-glucopyranoside) salicyloyl hydrazine (NGSH) has been performed for the first time. The research results show that NGSH has high photosensitivity and is vulnerable to be photo-ionized via a monophotonic process with a quantum yield of 0.02, generating NGSH and hydrated electrons. Under the aerobic condition of cells, the hydrated electrons are very easy to combine with oxygen to generate 1O2 and O2 , both of which are powerful oxidants that can kill the cancer cells. In addition, NGSH can be changed into neutral radicals by deprotonation with a pK a value of 4.02 and its decay constant was determined to be 2.55×109dm3·mol−1·s−1. NGSH also can be oxidized by SO4 −· with a rate constant of 1.76×109 dm3·mol−1·s−1, which further confirms the results of photoionization. All of these results suggest that this new N-glycoside compound might be useful for cancer treatment. The same contribution to the work Supported by the National Natural Science Foundation of China (Grant Nos. 30570376 and 50673078) and Shanghai Project (Grant Nos. 06JC14068 and 08ZZ21)  相似文献   

20.
The nature of intermediate species and their reactions were studied by laser pulse photolysis for a photochromic system consisting of 8,8′-diquinolyl disulfide (RSSR) and a planar NiII complex di(mercaptoquinolinato)nickel(II) (Ni(SR)2) in toluene and benzene solutions. Under exposure to laser radiation, disulfide RSSR dissociates to two RS· radicals, whose spectrum has an intense absorption band with a maximum at λ = 400 nm (ε = 8400 L mol−1 cm−1). The radicals disappear by recombination (2k rec = 4.6 · 109 L mol−1 s−1). In the presence of the Ni(SR)2 complex, coordination of the radical (k coord = 4.4 · 109 L mol−1 s−1) competes with recombination to form a radical complex RS· Ni(SR)2 having an intense absorption band with a maximum at 460 nm (ε = 16 600 L mol−1 cm−1). This species decays in the second-order reaction (2k = 4.6 · 104 L mol−1 s−1). Since the photochromic system returns to the initial state, the reaction of two radical complexes is assumed to produce radical recombination and reduction of the disulfide and Ni(SR)2 complex. Analysis of the kinetic data showed that some RS· radicals decay in the microsecond time interval due to the reaction with the RS· Ni(SR)2 radical complex (k = 3.1 · 109 L mol−1 s−1). Published in Russian in Izvestiya Akademii Nauk. Seriya Khimicheskaya, No. 10, pp. 2291–2300, October, 2005.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号