首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Pathological laryngeal flow fields are investigated in a dynamically-driven, scaled-up model of the vocal folds. Disruption of the flow field due to the presence of a geometric protuberance, representative of a sessile unilateral polyp, is investigated in both the streamwise and transverse flow directions using phase-averaged particle image velocimetry. It is shown that the protuberance disrupts the normal flow behavior of the glottal jet throughout the phonatory cycle. During the divergent portions of the glottal cycle, the flow is characterized by the formation of hairpin vortices downstream of the protuberance. The protuberance also introduces significant velocity gradients in the anterior-posterior direction, which cover ∼30  40% of the vocal fold length. It is proposed that the disruption of the normal velocity behavior owing to the presence of a polyp will adversely impact the aerodynamic loadings that drive vocal fold motion, contributing to the temporal and spatial vocal fold asymmetries that are clinically-observed in patients with unilateral polyps.  相似文献   

2.
Pulsatile two-dimensional flow through static divergent models of the human vocal folds is investigated. Although the motivation for this study is speech production, the results are generally applicable to a variety of engineering flows involving pulsatile flow through diffusers. Model glottal divergence angles of 10, 20, and 40° represent various geometries encountered in one phonation cycle. Frequency and amplitude of the flow oscillations are scaled with physiological Reynolds and Strouhal numbers typical of human phonation. Glottal velocity trajectories are measured along the anterior–posterior midline by using phase-averaged particle image velocimetry to acquire 1,000 realizations at ten discrete instances in the phonation cycle. The angular deflection of the glottal jet from the streamwise direction (symmetric configuration) is quantified for each realization. A bimodal flow configuration is observed for divergence angles of 10 and 20°, with the flow eventually skewing and attaching to the vocal fold walls. The deflection of the flow toward the vocal fold walls occurs when the forcing function reaches maximum velocity and zero acceleration. For a divergence angle of 40°, the flow never attaches to the vocal fold walls; however, there is increased variability in the glottal jet after the forcing function reaches maximum velocity and zero acceleration. The variation in the jet trajectory as a function of divergence angle is explained by performance maps of diffuser flow regimes. The smaller angle cases are in the unstable transitory stall regime while the 40° divergent case is in the fully developed two-dimensional stall regime. Very small geometric variations in model size and surface finish significantly affect the flow behavior. The bimodal, or flip-flopping, glottal jet behavior is expected to influence the dipole contribution to sound production.  相似文献   

3.
Flow through a driven, 7.5 times life-size vocal fold model was investigated at corresponding life-size flow rates of Q mean  = 89.1 ml/s, 159.4 ml/s, and 253.0 ml/s. The flow was scaled to match physiological values for Reynolds, Strouhal, and Euler numbers. The models were driven at a life-size frequency of 94 Hz. Particle image velocimetry (PIV) data were acquired in the anterior–posterior midplane of the glottis, and the unsteady transglottal pressure drop across the vocal folds was simultaneously measured. Flow and pressure data were obtained at four discrete instances during the closing phases of the phonatory cycle for which t/T open  = 0.60, 0.70, 0.80, and 0.90. The glottal jet trajectory exhibited a bimodal distribution of flow attachment between the two medial surfaces of the glottis. Vortex shedding at the trailing edge separation point generated instabilities in the shear layer, which caused large oscillations in the glottal jet orientation downstream of the glottal exit. The development of the Coanda effect during the glottal cycle was found to have minimal impact on the transglottal pressure drop, suggesting that flow orientation does not directly influence the dipole sound source. The change in transglottal pressure drop as a result of jet trajectory was less than 2% for all three investigated flow rates.  相似文献   

4.
The present experimental study aims at analyzing the jet formation of the glottal jet flow using a model of a leaky glottis. Experiments were performed in a flow channel with dynamic models of the vocal folds in order to measure the glottal waveform and the velocity distribution in the supraglottal region using High Speed Particle Image Velocimetry (HSPIV). Proper Orthogonal Decomposition (POD) of the vortex Q-criterion was performed in order to detect the energetically most significant large-scale vortex structures and their appearance in the jet flow. The spectral analysis of the glottal waveforms results in an increased spectral decay with more prominent peaks at higher frequencies in the case of a leaky glottis compared to a completely closing reference case. Vortex induced fluctuation frequencies have similar spectral content in both cases as they appear as trains of vortex packets in a regular manner over the glottal cycle. However, when removing the false vocal folds in the leaky glottis model, coherence of vortex generation is lost over the motion cycle. Thus, the presence of the false vocal folds retains most of the vortex induced characteristics in the source spectrum even when the vocal folds do not close fully.  相似文献   

5.
The paper provides experimental data on flow separation from a model of the human vocal folds. Data were measured on a four times scaled physical model, where one vocal fold was fixed and the other oscillated due to fluid–structure interaction. The vocal folds were fabricated from silicone rubber and placed on elastic support in the wall of a transparent wind tunnel. A PIV system was used to visualize the flow fields immediately downstream of the glottis and to measure the velocity fields. From the visualizations, the position of the flow separation point was evaluated using a semiautomatic procedure and plotted for different airflow velocities. The separation point position was quantified relative to the orifice width separately for the left and right vocal folds to account for flow asymmetry. The results indicate that the flow separation point remains close to the narrowest cross-section during most of the vocal fold vibration cycle, but moves significantly further downstream shortly prior to and after glottal closure.  相似文献   

6.
This work builds upon the efforts to characterize the three-dimensional features of the glottal jet during vocal fold vibration. The study uses a Stereoscopic Particle Image Velocimetry setup on a self-oscillating physical model of the vocal folds with a uniform vocal tract. Time averages are documented and analyzed within the framework given by observations reported for jets exiting elongated nozzles. Phase averages are locked to the audio signal and used to obtain a volumetric reconstruction of the jet. From this reconstruction, the intra-cycle dynamics of the jet axis switching is disclosed.  相似文献   

7.
We present a reduced-order model for fluid–structure interaction (FSI) simulation of vocal fold vibration during phonation. This model couples the three-dimensional (3D) tissue mechanics and a one-dimensional (1D) flow model that is derived from the momentum and mass conservation equations for the glottal airflow. The effects of glottal entrance and pressure loss in the glottis are incorporated in the flow model. We consider both idealized vocal fold geometries and subject-specific anatomical geometries segmented from the MRI images of rabbits. For the idealized vocal fold geometries, we compare the simulation results from the 1D/3D hybrid FSI model with those from the full 3D FSI simulation based on an immersed-boundary method. For the subject-specific geometries, we incorporate previously estimated tissue properties for individual samples and compare the results with those from the high-speed imaging experiment of in vivo phonation. In both setups, the comparison shows good agreement in the vibration frequency, amplitude, phase delay, and deformation pattern of the vocal fold, which suggests potential application of the present approach for future patient-specific modeling.  相似文献   

8.
The effect of subglottic stenosis on vocal fold vibration is investigated. An idealized stenosis is defined, parameterized, and incorporated into a two-dimensional, fully coupled finite element model of the vocal folds and laryngeal airway. Flow-induced responses of the vocal fold model to varying severities of stenosis are compared. The model vibration was not appreciably affected by stenosis severities of up to 60% occlusion. Model vibration was altered by stenosis severities of 90% or greater, evidenced by decreased superior model displacement, glottal width amplitude, and flow rate amplitude. Predictions of vibration frequency and maximum flow declination rate were also altered by high stenosis severities. The observed changes became more pronounced with increasing stenosis severity and inlet pressure, and the trends correlated well with flow resistance calculations. Flow visualization was used to characterize subglottal flow patterns in the space between the stenosis and the vocal folds. Underlying mechanisms for the observed changes, possible implications for human voice production, and suggestions for future work are discussed.  相似文献   

9.
The influence of surface hydration on the fluid–structure instability underlying vocal folds auto-oscillation during voiced speech sound production is an open research question. In this work the influence of homogeneous water spraying on an oscillating channel is investigated experimentally using several vocal folds replicas. Changes to glottal flow features are systematically quantified for a rigid replica with forced oscillation. Changes to auto-oscillation features are systematically quantified by analyzing the pressure measured upstream from deformable replicas. During auto-oscillation it is observed for increasing water volume that the first harmonic frequency decreases, its amplitude increases, cycle-to-cycle as well as overall fluctuations increase and the closing-opening asymmetry changes. Nevertheless, the magnitude of these effects differs between deformable replicas so that further systematic investigation is needed to quantify observations as well as to explore underlying mechanisms. Flow tendencies observed on all replicas support that water spraying affects the glottal flow rather then structural properties. This is an important finding for future modeling of the effect of water spraying on the fluid–structure interaction.  相似文献   

10.
STABILITYANALYSISOFSLOWLYDIVERGENTSWIRLINGFLOW(I)──THEORY'XiaNan(夏南);YinXieyuan(尹协远)(ReceivedJuly19.1993.CommunicatedbyTsaiSh...  相似文献   

11.
The stability of inviscid incompressible swirling flow with slowly divergence is investigated. A multiple scale expansion is used to develop a linear stability study of slowly divergent swirling flow with non-axisymmetric disturbances. The differential equations of zero-order and first-order disturbance module and governing equation of amplitude variation due to slowly divergent flow are derived. The Plaschko's equation for slowly divergent swirl-free jet has been extended to slowly divergent flow with swirl in the present study. Project supported by National Science Foundation of China  相似文献   

12.
In this study, the behaviour of an inclined water jet, which is impinged onto hydrophobic and superhydrophobic surfaces, has been investigated experimentally. Water jet was impinged with different inclination angles (15°–45°) onto five different hydrophobic surfaces made of rough polymer, which were held vertically. The water contact angles on these surfaces were measured as 102°, 112°, 123°, 145° and 167° showing that the last surface was superhydrophobic. Two different nozzles with 1.75 and 4 mm in diameters were used to create the water jet. Water jet velocity was within the range of 0.5–5 m/s, thus the Weber number varied from 5 to 650 and Reynolds number from 500 to 8,000 during the experiments. Hydrophobic surfaces reflected the liquid jet depending on the surface contact angle, jet inclination angle and the Weber number. The variation of the reflection angle with the Weber number showed a maximum value for a constant jet angle. The maximum value of the reflection angle was nearly equal to half of the jet angle. It was determined that the viscous drag decreases as the contact angle of the hydrophobic surface increases. The drag force on the wall is reduced dramatically with superhydrophobic surfaces. The amount of reduction of the average shear stress on the wall was about 40%, when the contact angle of the surface was increased from 145° to 167°. The area of the spreading water layer decreased as the contact angle of the surface increased and as the jet inclination angle, Weber number and Reynolds number decreased.  相似文献   

13.
This experimental study examines the flow characteristics over a square cross-section body with sharp edges, a rectangular one with rounded edges, and a high wing-body configuration, in a low subsonic free stream. Pressure, velocity, force measurements and flow visualization provide a picture of the flow behaviour, locally and globally. Flow visualization and velocity measurements clearly depict the presence of two axial counter-rotating vortices in the leeside of the first two bodies, being mainly responsible for the asymmetric loading at nonzero roll angles, maximizing the side-force at a roll angle of about 25°. For all body orientations there is always a recirculation region at the nose-afterbody junction leeside area, the extent of which depends mainly on the roll angle. Pressure gradients take high values at the corners of the after body cross-section, even when these are rounded. No asymmetries were practically detected for a zero roll angle and pitch angles up to 20° for the examined three models. The wing-body configuration exhibits a higher lift slope and a more negative zero lift angle, compared to the wing-alone case, and the side-force increases monotonically with the roll angle, without showing any maximum in contrast to the other two models.  相似文献   

14.
The objective of the present study is the detailed analysis of the unsteady vortex dynamics downstream of the human glottis during phonation at typical fundamental frequencies of the male voice of about 120 Hz. A hydraulic respiratory mock circuit has been built, including a factor of three up-scaled realistic dynamic model of the vocal folds. Time-resolving flow measurements were carried out downstream of the glottis by means of high-speed particle image velocimetry (PIV). The function of the human glottis is reproduced by two counter-rotating cams, each of which is covered with a stretched silicone membrane. The three-dimensional (3-D) geometry of the cams is designed such that the rotation leads to a realistic time-varying motion and profile of the glottis and waveform of the glottal cycle. Using high-speed PIV, the velocity field is captured with high spatial and temporal resolution to investigate the unsteady vortex dynamics of the cyclic jet-like flow in the vocal tract. The results help us to understand the vorticity interaction within the pulsating jet and, consequently, the generated sound in a human voice. In addition, changing the 3-D contours of the cams enables us to investigate basic pathological differences of the glottis function and the resulting alterations of the velocity and vorticity field in the vocal tract. The results are presented for typical physiological flow conditions in the human glottis. The frequencies of periodic vortex structures generated downstream of the glottis are fivefold higher than the fundamental frequency of the vocal folds oscillation. The highest vorticity fluctuations have a phase shift of 35% relative to the opening of the glottis. Finally, the flow field in the vocal tract is identified to be highly three-dimensional.  相似文献   

15.
Turbulent mixing of an inclined, skewed jet injected into a crossflow is investigated using MRI-based experiments and a high-fidelity LES of the same configuration. The MRI technique provides three-dimensional fields of mean velocity and mean jet concentration. The 30° skew of the jet relative to the crossflow produces a single dominant vortex which introduces spanwise asymmetries to the velocity and concentration fields. The turbulent scalar transport of the skewed jet is investigated in further detail using the LES, which is validated against the experimental measurements. Mixing is found to be highly anisotropic throughout the jet region. Isotropic turbulent diffusivity and viscosity are used to calculate an optimal value of the turbulent Schmidt number, which varies widely over the jet region and lies mostly outside of the typically accepted range 0.7 ≤ S c t ≤ 0.9. Finally, three common scalar flux models of increasing complexity are evaluated based on their ability to capture the anisotropy and predict the scalar concentration field of the present configuration. The higher order models are shown to better represent the turbulent scalar flux vector, leading to more accurate calculations of the concentration field. While more complex models are better able to capture the turbulent mixing, optimization of model constants is shown to significantly affect the results.  相似文献   

16.
This experimental study investigates the control of flow in a short diffuser with a 2×45° divergence angle, using wall synthetic jets. Measurements are made by particle image velocimetry. Velocity profiles, velocity fields, and vorticity maps show that the flow, initially separated as a free jet, undergoes a global excitation which creates periodic oscillating structures producing large fluid motions in the vicinity of the wall. This results in an increased mixing of the primary separated jet with the surrounding fluid.  相似文献   

17.
In this research the fluid dynamics characteristics of a stellar turbulent jet flow is studied numerically and the results of three dimensional jet issued from a stellar nozzle are presented. A numerical method based on control volume approach with collocated grid arrangement is employed. The turbulent stresses are approximated using kε and kω models with four different inlet conditions. The velocity field is presented and the rate of decay at jet centerline is noted. Special attention is drawn on the influence of corner angle and number of wings on mixing in stellar cross section jets. Stellar jets with three; four and five wings and 15–65° corner angles are studied. Also the effect of Reynolds number (based on hydraulic diameter) as well as the inflow conditions on the evolution of the stellar jet is studied. The Numerical results show that the jet entrains more with corner angle 65° and five wings number. The jet is close to a converged state for high Reynolds numbers. Also the influence of the inflow conditions on the jet characteristics is so strong.  相似文献   

18.
Bagley correction: the effect of contraction angle and its prediction   总被引:1,自引:0,他引:1  
The excess pressure losses due to end effects (mainly entrance) in the capillary flow of a branched polypropylene melt were studied both experimentally and theoretically. These losses were first determined experimentally as a function of the contraction angle ranging from 10° to 150°. It was found that the excess pressure loss function decreases for the same apparent shear rate with increasing contraction angle from 10° to about 45°, and consequently slightly increases from 45° up to contraction angles of 150°. Numerical simulations using a multimode K-BKZ viscoelastic and a purely viscous (Cross) model were used to predict the end pressures. It was found that the numerical predictions do agree well with the experimental results for small contraction angles up to 30°. However, the numerical simulations under-predict the end pressure for larger contraction angles. The effects of viscoelasticity, shear, and elongation on the numerical predictions are also assessed in detail. Shear is the dominant factor controlling the overall pressure drop in flows through small contraction angles. Elongation becomes important at higher contraction angles (greater than 45°). It is demonstrated in abrupt contractions (angle of 180°) that both the entrance pressure loss and the vortex size are strongly dependent on the extensional viscosity for this branched polymer. It is suggested that such an experiment (visualisation of entrance flow) can be useful in evaluating the validity of constitutive equations and it can also be used to fitting parameters of rheological models that control the elongational viscosity.  相似文献   

19.
The flow over a truncated cone is a classical and fundamental problem for aerodynamic research due to its three-dimensional and complicated characteristics. The flow is made more complex when examining high angles of incidence. Recently these types of flows have drawn more attention for the purposes of drag reduction in supersonic/hypersonic flows. In the present study the flow over a truncated cone at various incidences was experimentally investigated in a Mach 5 flow with a unit Reynolds number of 13.5 × 106 m−1. The cone semi-apex angle is 15° and the truncation ratio (truncated length/cone length) is 0.5. The incidence of the model varied from −12° to 12° with 3° intervals relative to the freestream direction. The external flow around the truncated cone was visualised by colour Schlieren photography, while the surface flow pattern was revealed using the oil flow method. The surface pressure distribution was measured using the anodized aluminium pressure-sensitive paint (AA-PSP) technique. Both top and sideviews of the pressure distribution on the model surface were acquired at various incidences. AA-PSP showed high pressure sensitivity and captured the complicated flow structures which correlated well with the colour Schlieren and oil flow visualisation results.  相似文献   

20.
The boundary layer transition along the attachment line of a smooth swept circular cylinder in hypersonic flow is investigated in a blowdown wind tunnel. A wide range of spanwise Mach numbers Me (3.28 to 6.78) is covered with the help of different models at several sweep angles (60°?Λ?80°). The transition is indirectly detected by means of heat flux measurements. The influence of the wall to stagnation temperature ratio is investigated by cooling the model with liquid nitrogen.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号