首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
王敬伯  徐征  陈福韬 《发光学报》1986,7(2):148-160
本文研究了LaOBr:Ce+3,Tb3+粉末在液氦温度(4.2K)下的电子顺磁共振,并且进行了晶体场理论计算,理论与实验结果符合得较好,这表明Ce,Tb离子取代了基质中La离子形成发光中心。  相似文献   

2.
We determine the limiting dynamics of a fermionic condensate following a sudden perturbation for various initial conditions. Possible initial states of the condensate fall into two classes. In the first case, the order parameter asymptotes to a constant value. The approach to a constant is oscillatory with an inverse square root decay. This happens, e.g., when the strength of pairing is abruptly changed while the system is in the paired ground state and more generally for any nonequilibrium state that is in the same class as the ground state. In the second case, the order parameter exhibits persistent oscillations with several frequencies. This is realized for nonequilibrium states that belong to the same class as excited stationary states.  相似文献   

3.
It is shown how the general formulas of the nonequilibrium diagram technique can be used in problems of tunnel planar structures described in the effective mass approach. The relation between such a “continual” approach and the tunneling Hamiltonian method is established, and the applicability conditions for this method are determined. The effects beyond the applicability limits of the tunneling Hamiltonian method, which can be described by the continual approach, are considered.  相似文献   

4.
《Physica A》2006,369(1):201-246
An overview is given of recent advances in nonequilibrium statistical mechanics on the basis of the theory of Hamiltonian dynamical systems and in the perspective provided by the nanosciences. It is shown how the properties of relaxation toward a state of equilibrium can be derived from Liouville's equation for Hamiltonian dynamical systems. The relaxation rates can be conceived in terms of the so-called Pollicott–Ruelle resonances. In spatially extended systems, the transport coefficients can also be obtained from the Pollicott–Ruelle resonances. The Liouvillian eigenstates associated with these resonances are in general singular and present fractal properties. The singular character of the nonequilibrium states is shown to be at the origin of the positive entropy production of nonequilibrium thermodynamics. Furthermore, large-deviation dynamical relationships are obtained, which relate the transport properties to the characteristic quantities of the microscopic dynamics such as the Lyapunov exponents, the Kolmogorov–Sinai entropy per unit time, and the fractal dimensions. We show that these large-deviation dynamical relationships belong to the same family of formulas as the fluctuation theorem, as well as a new formula relating the entropy production to the difference between an entropy per unit time of Kolmogorov–Sinai type and a time-reversed entropy per unit time. The connections to the nonequilibrium work theorem and the transient fluctuation theorem are also discussed. Applications to nanosystems are described.  相似文献   

5.
We consider the Hubbard model at half filling, driven by an external, stationary laser field. This stationary, but periodic in time, electromagnetic field couples to the charge current, i.e. it induces an extra contribution to the hopping amplitude in the Hubbard Hamiltonian (photo‐induced hopping). We generalize the dynamical mean‐field theory (DMFT) for nonequilibrium with periodic‐in‐time external fields, using a Floquet mode representation and the Keldysh formalism. We calculate the non‐equilibrium electron distribution function, the density of states and the optical DC conductivity in the presence of the external laser field for laser frequencies above and below the Mott‐Hubbard gap. The results demonstrate that the system exhibits an insulator‐metal transition as the frequency of the external field is increased and exceeds the Mott‐Hubbard gap. This corresponds to photo‐induced excitations into the upper Hubbard band.  相似文献   

6.
The zero-temperature single-particle Green's function of correlated fermion models with moderately large Hilbert-space dimensions can be calculated by means of Krylov-space techniques. The conventional Lanczos approach consists of finding the ground state in a first step, followed by an approximation for the resolvent of the Hamiltonian in a second step. We analyze the character of this approximation and discuss a numerically exact variant of the Lanczos method which is formulated in the time domain. This method is extended to obtain the nonequilibrium single-particle Green's function defined on the Keldysh-Matsubara contour in the complex time plane which describes the system's nonperturbative response to a sudden parameter switch in the Hamiltonian. The proposed method will be important as an exact-diagonalization solver in the context of self-consistent or variational cluster-embedding schemes. For the recently developed nonequilibrium cluster-perturbation theory, we discuss its efficient implementation and demonstrate the feasibility of the Krylov-based solver. The dissipation of a strong local magnetic excitation into a non-interacting bath is considered as an example for applications.  相似文献   

7.
The geometrical method for constructing optical surfaces for illumination purpose developed by Oliker and co-workers [Trends in Nonlinear Analysis (Springer, 2003)] is generalized in order to obtain freeform designs in arbitrary optical systems. The freeform is created by a set of primitive surface elements, which are generalized Cartesian ovals adapted to the given optical system. Those primitives are determined by Hamiltonian theory of ray optics. The potential of this approach is demonstrated by some examples, e.g., freeform lenses with collimating front elements.  相似文献   

8.
We show that intensive thermodynamic parameters associated to additive conserved quantities can be naturally defined from a statistical approach in far-from-equilibrium steady-state systems, under few assumptions, and without any detailed balance requirement. It may apply, e.g., to dissipative systems such as granular gases where volume or mass is still conserved or to systems with periodic boundary conditions where fluxes of conserved quantities are present. We emphasize the usefulness of this concept to characterize the coexistence of different nonequilibrium phases and discuss the influence of the contact between two different systems, in relation with measurement issues.  相似文献   

9.
We investigate higher-order geometric k-splines for template matching on Lie groups. This is motivated by the need to apply diffeomorphic template matching to a series of images, e.g., in longitudinal studies of Computational Anatomy. Our approach formulates Euler-Poincaré theory in higher-order tangent spaces on Lie groups. In particular, we develop the Euler-Poincaré formalism for higher-order variational problems that are invariant under Lie group transformations. The theory is then applied to higher-order template matching and the corresponding curves on the Lie group of transformations are shown to satisfy higher-order Euler-Poincaré equations. The example of SO(3) for template matching on the sphere is presented explicitly. Various cotangent bundle momentum maps emerge naturally that help organize the formulas. We also present Hamiltonian and Hamilton-Ostrogradsky Lie-Poisson formulations of the higher-order Euler-Poincaré theory for applications on the Hamiltonian side.  相似文献   

10.
The polaron has been of interest in condensed matter theory and field theory for about half a century, especially the limit of large coupling constant, α. It was not until 1983, however, that a proof of the asymptotic formula for the ground state energy was finally given by using difficult arguments involving the large deviation theory of path integrals. Here we derive the same asymptotic result, , and with explicit error bounds, by simple, rigorous methods applied directly to the Hamiltonian. Our method is easily generalizable to other settings, e.g., the excitonic and magnetic polarons. Received: 6 May 1996/Accepted: 20 May 1996  相似文献   

11.
Symplectic analysis is introduced into electro-magnetic waveguide theory, by using Hamiltonian system theory in which the transverse electric and magnetic field vectors are the dual vectors. The method can accommodate arbitrary anisotropic material and includes the interface conditions between adjacent segments of the waveguide. An electro-magnetic stiffness matrix is introduced which relates to the two ends of each segment of the waveguide. Both the pass- and stop-band stiffness matrices for plane waveguides with constant cross-section are given analytically and also a transformation matrix is given to permit abrupt changes of cross-section to occur. The variational principle is applied to obtain the segment combination algorithm needed to generate the electro-magnetic stiffness matrix related to the two ends of the fundamental periodical segment. Then the Wittrick-Williams algorithm is used to extract the eigenvalues. Thereafter, an energy band analysis is performed for a periodical waveguide, e.g., a grating, by using the symplectic eigensolutions.  相似文献   

12.
13.
We describe the volume dependence of matrix elements of local fields to all orders in inverse powers of the volume (i.e., only neglecting contributions that decay exponentially with volume). Using the scaling Lee–Yang model and the Ising model in a magnetic field as testing ground, we compare them to matrix elements extracted in finite volume using truncated conformal space approach to exact form factors obtained using the bootstrap method. We obtain solid confirmation for the form factor bootstrap, which is different from all previously available tests in that it is a non-perturbative and direct comparison of exact form factors to multi-particle matrix elements of local operators, computed from the Hamiltonian formulation of the quantum field theory. We also demonstrate that combining form factor bootstrap and truncated conformal space is an effective method for evaluating finite volume form factors in integrable field theories over the whole range in volume.  相似文献   

14.
The theory of nonequilibrium potentials or quasipotentials is a physically motivated approach to small random perturbations of dynamical systems, leading to exponential estimates of invariant probabilities and mean first exit times. In the present article we develop the mathematical foundation of this theory for discrete-time systems, following and extending the work of Freidlin and Wentzell, and Kifer. We discuss strategies for calculating and estimating quasipotentials and show their application to one-dimensionalS-unimodal maps. The method proves to be especially suited for describing the noise scaling behavior of invariant probabilities, e.g., for the map occurring as the limit of the Feigenbaum period-doubling sequence. We show that the method allows statements about the scaling behavior in the case of localized noise, too, which does not originally lie within the scope of the quasipotential formalism.  相似文献   

15.
16.
Optimal control in NMR spectroscopy: Numerical implementation in SIMPSON   总被引:2,自引:2,他引:0  
We present the implementation of optimal control into the open source simulation package SIMPSON for development and optimization of nuclear magnetic resonance experiments for a wide range of applications, including liquid- and solid-state NMR, magnetic resonance imaging, quantum computation, and combinations between NMR and other spectroscopies. Optimal control enables efficient optimization of NMR experiments in terms of amplitudes, phases, offsets etc. for hundreds-to-thousands of pulses to fully exploit the experimentally available high degree of freedom in pulse sequences to combat variations/limitations in experimental or spin system parameters or design experiments with specific properties typically not covered as easily by standard design procedures. This facilitates straightforward optimization of experiments under consideration of rf and static field inhomogeneities, limitations in available or desired rf field strengths (e.g., for reduction of sample heating), spread in resonance offsets or coupling parameters, variations in spin systems etc. to meet the actual experimental conditions as close as possible. The paper provides a brief account on the relevant theory and in particular the computational interface relevant for optimization of state-to-state transfer (on the density operator level) and the effective Hamiltonian on the level of propagators along with several representative examples within liquid- and solid-state NMR spectroscopy.  相似文献   

17.
Chaotic diffusion often represents a severe obstacle for the setup of experiments, e.g., in fusion plasmas or particle accelerators. We present a complete test of a method of control of Hamiltonian chaos, with both its numerical test and its first experimental realization on a paradigm for wave-particle interaction, i.e., a travelling wave tube. The core of our approach is a small apt modification of the system which channels chaos by building barriers to diffusion. Its experimental realization opens the possibility to practically achieve the control of a wide range of systems at a low additional cost of energy.  相似文献   

18.
The stochastic limit of quantum theory suggests a new, constructive, approach to nonequilibrium phenomena. We illustrate this approach when considering the interaction of 3-level system with a quantum field in a nonequilibrium state. We describe a class of states of the quantum field for which a stationary state drives the system to an inversely populated state. We find that the quotient of the population of the energy levels in the simplest case is described by the double Einstein formula which involves products of two Einstein emission/absorption factors. Emission and absorption of radiation by 3-level atom in nonequilibrium stationary state is described.  相似文献   

19.
This paper reviews various applications of the theory of smooth dynamical systems to conceptual problems of nonequilibrium statistical mecanics. We adopt a new point of view which has emerged progressively in recent years, and which takes seriously into account the chaotic character of the microscopic time evolution. The emphasis is on nonequilibrium steady states rather than the traditional approach to equilibrium point of view of Boltzmann. The nonequilibrium steady states, in presence of a Gaussian thermostat, are described by SRB measures. In terms of these one can prove the Gallavotti–Cohen fluctuation theorem. One can also prove a general linear response formula and study its consequences, which are not restricted to near-equilibrium situations. At equilibrium one recovers in particular the Onsager reciprocity relations. Under suitable conditions the nonequilibrium steady states satisfy the pairing theorem of Dettmann and Morriss. The results just mentioned hold so far only for classical systems; they do not involve large size, i.e., they hold without a thermodynamic limit.  相似文献   

20.
We construct the effective Hamiltonian which governs the renormalization group flow of the gluon distribution with increasing energy and in the leading logarithmic approximation. This Hamiltonian defines a two-dimensional field theory which involves two types of Wilson lines: longitudinal Wilson lines which describe gluon recombination (or merging) and temporal Wilson lines which account for gluon bremsstrahlung (or splitting). The Hamiltonian is self-dual, i.e., it is invariant under the exchange of the two types of Wilson lines. In the high density regime where one can neglect gluon number fluctuations, the general Hamiltonian reduces to that for the JIMWLK evolution. In the dilute regime where gluon recombination becomes unimportant, it reduces to the dual partner of the JIMWLK Hamiltonian, which describes bremsstrahlung.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号