首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The problem under consideration is that of the stationary shape of the free surface of a viscous fluid in a steadily rotating horizontal cylinder. In the majority of investigations of this problem the thickness of the fluid layer coating the inner surface of the cylinder is assumed to be small [1–3]. The case of a near-horizontal free surface, with the bulk of the fluid at the cylinder bottom, was considered in [4], where, after considerable simplification, the governing equations were reduced to ordinary differential equations. In the present study the behavior of the free surface is investigated using a creeping flow approximation. The controlling parameters vary over a wide range. In the numerical computations a boundary element method was used. The numerical results have been confirmed experimentally.Translated from Izvestiya Rossiiskoi Akademii Nauk, Mekhanika Zhidkosti i Gaza, No. 3, pp. 25–30, May–June, 1993.  相似文献   

2.
Two-dimensional viscous flow with a free surface in a horizontal cylinder rotating at a constant speed is investigated numerically using the boundary element method. It is shown that in the initial stage of rotation of the cylinder four different variants of the behavior of the free surface can be realized in the stage of transition from horizontal to steady-state form.  相似文献   

3.
Azimuthal wave motions in a liquid which partially fills a cylinder (centrifuge) rapidly rotating about a horizontal axis are discussed in this paper. Under the action of centrifugal force the liquid is pressed to the wall of the cylinder and moves together with it about the central air core. The vibrations of the free surface which arise are called centrifugal waves [1]. The difficulties of their theoretical investigation are related to the nonlinearity both of the basic equations and also of the boundary condition for the pressure on the free surface; therefore they have previously been studied only by linear methods [1, 2]. Nonlinear azimuthal waves in a centrifuge with an infinite radius of the rotating cylinder are analytically described below. The waves found are an analog of Gerstner trochoidal waves on a cylindrical surface. An approximate solution for a centrifuge with a finite outer radius is constructed by matching the waves obtained to the known linear ones.Translated from Zhurnal Prikladnoi Mekhaniki i Tekhnicheskoi Fiziki, No. 3, pp. 86–89, May–June, 1984.In conclusion the author expresses his gratitude to E. I. Yakubovich for useful discussion.  相似文献   

4.
5.
The axisymmetric flow of a highly viscous incompressible liquid as it fills the space between semi-infinite vertical coaxial cylinders is investigated. The liquid flows into the vessel at a constant rate along the surface of the inner cylinder. The flow is characterized by the presence of a free surface. The problem is formulated in the creep flow approximation and is solved numerically. The numerical solution leads to an investigation of the hydrodynamics of the filling process, including the stage in which the liquid spreads over the horizontal surface and the filling stage which follows the arrival of the free surface front at the wall of the outer cylinder.Translated from Izvestiya Akademii Nauk SSSR, Mekhanika Zhidkosti i Gaza, No. 1, pp. 65–70, January–February, 1990.  相似文献   

6.
A method of solving the problem of the translational motion of a cylinder of given shape below the free surface of an infinitely deep heavy fluid is developed. As distinct from existing techniques, the method permits the obtaining of a solution which becomes exact as the Froude number increases without bound. The solution of the problem of the motion of a circular cylinder is considered in detail. Suggestions are made concerning the characteristic properties of an exact solution of the general problem.Kazan'. Translated from Izvestiya Rossiiskoi Akademii Nauk, Mekhanika Zhidkosti i Gaza, No. 6, pp. 9–22, November–December, 1996.  相似文献   

7.
The head on collisions of trains of solitons induced by a two-dimensional submerged elliptical cylinder at critical speed in shallow water are studied based on velocity potential theory. The boundary value problems are solved through boundary element method (BEM). The nonlinear free surface boundary conditions are satisfied. The mixed Euler–Lagrangian method is adopted to track the free surface through a time stepping scheme. The effects of thickness and velocity of the elliptical cylinder on the evolution of solitary waves have been investigated. Two sets of solitons are truncated from these trains of solitary waves. The head-on collisions of these solitons have been simulated. The wave profiles and velocity fields during collision have been analysed. The propagation of solitary waves is the transmissions of kinetic energy and the collision processes are the results of the dynamic balance of potential energy and kinematic energy.  相似文献   

8.
The linear problem of high-frequency oscillations of a horizontal cylinder floating at the interface of a two-layer fluid was solved numerically using the boundary element method. Added masses are calculated for circular and elliptic cylinders.  相似文献   

9.
An explicit formulation to study nonlinear waves interacting with a submerged body in an ideal fluid of infinite depth is presented. The formulation allows one to decompose the nonlinear wave–body interaction problem into body and free‐surface problems. After the decomposition, the body problem satisfies a modified body boundary condition in an unbounded fluid domain, while the free‐surface problem satisfies modified nonlinear free‐surface boundary conditions. It is then shown that the nonlinear free‐surface problem can be further reduced to a closed system of two nonlinear evolution equations expanded in infinite series for the free‐surface elevation and the velocity potential at the free surface. For numerical experiments, the body problem is solved using a distribution of singularities along the body surface and the system of evolution equations, truncated at third order in wave steepness, is then solved using a pseudo‐spectral method based on the fast Fourier transform. A circular cylinder translating steadily near the free surface is considered and it is found that our numerical solutions show excellent agreement with the fully nonlinear solution using a boundary integral method. We further validate our solutions for a submerged circular cylinder oscillating vertically or fixed under incoming nonlinear waves with other analytical and numerical results. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

10.
The linear steady problem of an irrotational uniform flow past a horizontal circular cylinder located in the upper or in the lower layer of a two-layer fluid is solved by the multipole-expansion method. The flow is perpendicular to the axis of the cylinder. The fluid is assumed to be inviscid and incompressible, and the flow in each layer is assumed to be potential. The upper layer can be bounded by a free surface or a solid lid, and the lower layer by a rigid horizontal bottom. Lavrent'ev Institute of Hydrodynamics, Siberian Division, Russian Academy of Sciences Novosibirsk 630090. Translated from Prikladnaya Mekhanika i Tekhnicheskaya Fizika, Vol. 39, No. 6, pp. 91–101, November–December, 1998.  相似文献   

11.
This paper aims to study a novel drop-on-demand droplet generation mechanism in which the oscillation and deformation of a non-equilibrium bubble in close proximity to a free surface induce an axisymmetric liquid spike on the free surface. The evolution of the liquid spike and its deformation due to the effect of surface tension force lead to the formation of a droplet. The free surface can be accorded by either a circular hole on a horizontal flat plate or by the top opening/nozzle of a vertical cylinder. A high-speed camera capable of obtaining images at a frame rate of 15,000 fps is utilized to observe the droplet formation process. Numerical simulations corresponding to the experiments are performed using the boundary integral spatial solution coupled with the time integration, i.e., a mixed Eulerian–Lagrangian method. In the experiments the bubble is generated using a very low voltage (only 55 V) in contrast to the relatively much higher voltages usually employed in reported works. This is very attractive from a safety viewpoint and accords great simplification of the setup. A comparison is made between the numerical and experimental results. A reasonable agreement has been found. The influences of the main design parameters, namely, the bubble-free surface distance and the dimension of the hole/nozzle on the bubble dynamics and on the droplet formation process are discussed and the conditions of the bubble dynamics under which a satellite-free droplet can be generated are sought. Furthermore, the effects of different geometries, namely, the horizontal flat plate and the vertical cylinder on the bubble dynamics and on the droplet features are examined. One important feature of the proposed actuation mechanism is the capability of producing droplets much smaller than the nozzle size. The possible applications of this mechanism are those where the accurate direction of the ejected droplet is of great importance such as inkjet printing.   相似文献   

12.
Results of solving a linear problem on steady vibrations of a horizontal cylinder submerged in a fluid, whose upper boundary is partially closed by a solid lid, whereas the rest of the surface is free, are presented. Multipole and eigenfunction expansion methods are used. Reciprocity relations are derived. Added-mass and damping coefficients and the wave amplitudes on the free surface of the fluid are calculated.  相似文献   

13.
In this study, a method is developed to simulate the interaction between free surface flows and moving or deforming boundaries using the flux‐difference splitting scheme on the hybrid Cartesian/immersed boundary method. At each physical time step, the boundary is defined by an unstructured triangular surface grid. Immersed boundary (IB) nodes are distributed inside an instantaneous fluid domain based on edges crossing the boundary. At an IB node, dependent variables are reconstructed along the local normal line to the boundary. Inviscid fluxes are computed using Roe's flux‐difference splitting scheme for immiscible and incompressible fluids. The free surface is considered as a contact discontinuity in the density field. The motion of free surface is captured without any additional treatment along the fluid interface. The developed code is validated by comparisons with other experimental and computational results for a piston‐type wave maker, impulsive motion of a submerged circular cylinder, flow around a submerged hydrofoil, and Rayleigh–Taylor instability. The developed code is applied to simulate wave generation due to a continuously deforming bed beneath the free surface. The violent motion of a free surface caused by sloshing in a spherical tank is simulated. In this case, the free surface undergoes breakup and reconnection. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

14.
A study is made of the stability of the plane-parallel flow of a viscous liquid in a layer with a free boundary, under weightless conditions. The motion of the liquid is due to the dependence of the surface tension on the temperature. An exact solution for an unperturbed boundary is obtained by the same method used in [1], but with a more general boundary condition for the temperature. A study of the stability was carried out by the method of small vibrations, taking account of the perturbation of the free boundary. The article discusses the asymptotic behavior of long waves at small Reynolds numbers, and the conditions for instability are found.Translated from Zhurnal Prikladnoi Mekhaniki i Tekhnicheskoi Fiziki, No. 6, pp. 94–98, November–December, 1971.  相似文献   

15.
The results of solving the linear problem of steady-state oscillations of a horizontal cylinder submerged in fluid on whose upper boundary a semi-infinite elastic plate with free edge floats are given. The remaining part of the fluid surface is free. The contour-distributed mass source method is used. The corresponding Green’s function is constructed using eigenfunction expansions. The hydrodynamic load and the amplitudes of vertical displacements of the free surface and elastic plate are calculated. Equivalence relations which demonstrate both symmetry of the apparent mass and damping factors and connection of the damping factors with the wave amplitudes in the far field are derived.  相似文献   

16.
The results of an experimental investigation of the boundary pressure fluctuations ahead of an axisymmetric step on an ogival cylinder are presented. The experiments were carried out at supersonic flow velocities on the low Reynolds number range. The results made it possible to detect a new phenomenon, previously unobserved in flows with a free separation line — the generation, development and decay of sharply expressed high-intensity peaks in the pressure fluctuation spectra with variation of the Reynolds numbers corresponding to separtion of the transitional boundary layer.Translated from Izvestiya Akademii Nauk SSSR, Mekhanika Zhidkosti i Gaza, No. 3, pp. 170–173, May–June, 1989.  相似文献   

17.
A mixed method of arbitrary Lagrangian-Eulerian boundary element and finite element method (ALE-BE-FE method) is proposed for solving fluid-structure impact problems, in which the effect of structural deformation due to hydrodynamic pressure is taken into account. In addition, this method also enables us to analyze the influence of nonlinear free surface conditions on the impact response. Two numerical examples of an impacting cylinder and an impacting wedge into an initially calm water treated as 2-D problems are presented. It shows that the proposed method is effective to obtain a fluid-structure impact solution.This project is financially supported by the National Education Foundation of China.  相似文献   

18.
The stability of transient flow in a cylinder of an ideal incompressible fluid with a free boundary is studied. There are 20 different cases of the behavior of small disturbances as a function of the parameters of the problem. In particular, if surface tension is not taken into account a round jet is stable with respect to axially symmetrical disturbances, but the introduction of capillary forces leads to a strong instability.Translated from Zhurnal Prikladnoi Mekhaniki i Tekhnicheskoi Fiziki, No. 4, pp. 80–84, July–August, 1972.In conclusion the author thanks V. V. Pukhnachev for formulation of the problem and valuable advice.  相似文献   

19.
Equilibrium shapes of a liquid, situated on the outer or inner surface of a rigid cylinder and rotating together with it as a solid body, are studied. We determine the principal part of the solution of the equilibrium equation for small deviations of the determining parameter from the critical value. The bifurcation of rotationally symmetric motions with a free boundary in a body force field is also investigated.Translated from Zhurnal Prikladnoi Mekhaniki i Tekhnicheskoi Fiziki, No. 2, pp. 127–134, March–April, 1973.The authors thank V. Kh. Izakson for his discussion of the work.  相似文献   

20.
Vortex methods have found wide applications in various practical problems. The use of vortex methods in free surface flow problems, however, is still very limited. This paper demonstrates a vortex method for practical computation of non-linear free surface flows produced by moving bodies. The method is a potential flow formulation which uses the exact non-linear free surface boundary condition at the exact location of the instantaneous free surface. The position of the free surface, on which vortices are distributed, is updated using a Lagrangian scheme following the fluid particles on the free surface. The vortex densities are updated by the non-linear dynamic boundary condition, derived from the Euler equations, with an iterative Lagrangian numerical scheme. The formulation is tested numerically for a submerged circular cylinder in unsteady translation. The iteration is shown to converge for all cases. The results of the unsteady simulations agree well with classical linearized solutions. The stability of the method is also discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号