首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 294 毫秒
1.
In this study, the authors have investigated the structural and optical properties of ZnO layer grown by pulsed laser deposition on GaN/r-plane sapphire. X-ray diffraction results demonstrate the ZnO film to be highly preferentially deposited at a-axis orientation; the different rocking curve values along the two orthogonal directions indicate the low C2v symmetry in the growth a-plane ZnO. From free stress to large tensile stress (about 1.34 × 109 Pa) distribution along the growth direction of ZnO is revealed by visible Raman mapping spectra. The enhanced significantly high-order longitudinal-optical (LO) phonon modes up to 4th and no TO phonons have been observed in Raman spectrum under UV 325 nm by resonance conditions; an intense and broad disorder activated surface phonon mode is also observed, resulting from the increased disorder on the film surface with stripe-like growth features. Low-temperature photoluminescence measurements reveal that the band-edge emission of ZnO is dominated by neutral donor-bound exciton and free electrons to neutral acceptor emissions. Interfacial microstructure of ZnO/GaN has been examined by transmission electron microscopy, with the epitaxial relationship () ZnO//() GaN. All these results indicated that GaN template played an important role in the growth of ZnO film, with full advantage of small lattice mismatch.  相似文献   

2.
The stable adsorption sites for both Ga and N ions on the ideal and on the reconstructed LiNbO3 (0 0 0 1) surface are determined by means of first-principle total energy calculations. A single N layer is found to be more strongly bound to the substrate than a single Ga layer. The adsorption of a GaN monolayer on the polar substrate within different orientations is then modeled. On the basis of our results, we propose a microscopic model for the GaN/LiNbO3 interface. The GaN and LiNbO3 (0 0 0 1) planes are parallel, but rotated by 30° each other, with in-plane epitaxial relationship [1 0 0]GaN‖ [1 1  0]LiNbO3. In this way the (0 0 0 1) plane lattice mismatch between GaN and LiNbO3 is minimal and equal to 6.9% of the GaN lattice constant. The adsorbed GaN and the underlying LiNbO3 substrate have parallel c-axes.  相似文献   

3.
The reactions at 4.9 MeV and at 8.5 MeV have been used to investigate the γ decay of states in 12C. By measuring the four-body final state in complete kinematics we are able to detect γ transitions indirectly. We find γ transitions from the 15.11 MeV state in 12C to the 12.71, 11.83, 10.3 and 7.65 MeV states followed by their breakup into three α particles. The relative γ-ray branching ratios obtained are (1.2±0.3), (0.32±0.12), (1.4±0.2) and (4.4±0.8)%, respectively, with the remaining (92.7±1.0)% of the γ decays going to the bound states. We obtain Γα/Γ=(2.8±1.2)% for the isospin-forbidden α decay of the 15.11 MeV state. From the 12.71 MeV state we find γ transitions to the 10.3 and 7.65 MeV states. The relative γ-ray branching ratios are and , respectively, with the remaining of the γ decays going to the bound states. Finally, we discuss the relation between the β decay of 12N and 12B to states in 12C and the γ decay of the 15.11 MeV analog in 12C to the same states.  相似文献   

4.
ZnO films are hydrothermally grown on ZnO-buffered c-plane sapphire substrates at a low temperature of 70 °C. A radio-frequency (RF) reactive magnetron sputtering has been used to grow the ZnO buffer layers. X-ray diffraction, scanning electron microscopy, and room temperature photoluminescence are carried out to characterize the structure, morphology and optical property of the films. It is found that the films are stress-free. The epitaxial relationship between the ZnO film and the c-plane sapphire substrate is found to be ZnO (0 0 0 1)||Al2O3 (0 0 0 1) in the surface normal and in plane. Sapphire treatment, as such acid etching, nitridation, and oxidation are found to influence the nucleation of the film growth, and the buffer layers determine the crystalline quality of the ZnO films. The maximum PL quantum efficiency of ZnO films grown with hydrothermal method is found to be about 80% of single-crystal ZnO.  相似文献   

5.
The order–disorder phase transition on the α-Ga(0 1 0) structure was studied by spot-profile analysis low energy electron diffraction (SPA-LEED). A low temperature diffraction pattern reveals a small splitting of the overlayer spots which corresponds to a real-space distance of 81 Å, equivalent to 18 unit cells. The splitting is interpreted as caused by a regular ordering of anti-phase domains of the low-temperature phase. Due to the low symmetry of the surface, the domain boundaries are aligned only in one direction, giving rise to a regular, one-dimensional grid. The temperature dependence of the intensity and width of the reconstruction-induced diffraction spots is also investigated. It suggests that the phase transition takes place at a critical temperature Tc=232 K and that anti-phase boundary proliferation plays a role.  相似文献   

6.
The formation of step bunches and/or facets on hydrogen-etched 6H-SiC(0 0 0 1) and () surfaces has been studied, using both nominally on-axis and intentionally miscut (i.e. vicinal) substrates. It is found that small miscuts on the (0 0 0 1) surface produce full unit-cell high steps, while half unit-cell high steps are observed on the () surface. The observed step normal direction is found to be for both surfaces. Hence, for intentionally miscut material, a miscut oriented towards this direction produces much better order in the step array compared to a miscut oriented towards a direction. For (0 0 0 1) vicinal surfaces that are miscut towards the direction, the formation of surface ripples is observed for 3° miscut and the development of small facets (nanofacets) is found for higher miscut angles. Much less faceting is observed on miscut () surfaces. Additionally, the (0 0 01) surface is found to have a much larger spatial anisotropy in step energies than the () surface.  相似文献   

7.
Low-resistivity n-type ZnO thin films were grown by atomic layer deposition (ALD) using diethylzinc (DEZ) and H2O as Zn and O precursors. ZnO thin films were grown on c-plane sapphire (c- Al2O3) substrates at 300 C. For undoped ZnO thin films, it was found that the intensity of ZnO () reflection peak increased and the electron concentration increased from 6.8×1018 to 1.1×1020 cm−3 with the increase of DEZ flow rate, which indicates the increase of O vacancies () and/or Zn interstitials (Zni). Ga-doping was performed under Zn-rich growth conditions using triethylgallium (TEG) as Ga precursor. The resistivity of 8.0×10−4 Ω cm was achieved at the TEG flow rate of 0.24 μmol/min.  相似文献   

8.
The 288 nm band system of FeCl2 has been recorded with a sample produced in a warmed, free-jet expansion at moderately high resolution (with a linewidth of 0.28 cm−1). Under these conditions, several hot bands are observed involving excitation of the symmetric and anti-symmetric stretching vibrations. The wavenumbers determined as a result for FeCl2 in its ground 5Δg,4 state are and . No hot, sequence bands in the bending vibration were observed. The most likely explanation is that the wavenumber for ν2 is essentially the same in both the electronic states involved (88 cm−1). Additional strong hot bands are observed that are unrelated to the previously assigned electronic transitions; they appear to emanate from a low-lying electronic state of FeCl2.  相似文献   

9.
10.
High quality epitaxial ZnO films were grown on c-Al2O3 substrates with Cr2O3 buffer layer by plasma-assisted molecular beam epitaxy (P-MBE). The hexagonal crystalline Cr2O3 layer was formed by oxidation of the Cr-metal layer deposited on the c-Al2O3 substrate using oxygen plasma. The epitaxial relationship was determined to be ZnO//Cr2O3//Cr//Al2O3 and ZnO//Cr2O3//[0 0 1]Cr//Al2O3. The Cr2O3 buffer layer was very effective in improving the surface morphology and crystal quality of the ZnO films. The photoluminescence spectrum showed the strong near band-edge emissions with the weak deep-level emission, which implies high optical quality of the ZnO films grown on the Cr2O3 buffer.  相似文献   

11.
Structural, optical and thermal properties of Dy3+ doped lithium fluoroborate glasses have been studied for various concentrations of Dy3+ from 0.5 to 5 wt%. The XRD studies confirm the amorphous nature of the glasses while the FTIR spectra reveal the presence of BO3 and BO4 local structural units. The UV–VIS–NIR absorption studies were carried out to calculate the bonding parameters ( and δ), to identify the ionic/covalent nature of the glasses. The JO parameters, experimental and theoretical oscillator strengths were also determined and reported. The luminescence spectra have been studied to determine the radiative transition probability (A), stimulated emission cross section () and the experimental and calculated branching ratios (βR) for the excited levels that include 4F9/26H11/2, 6H13/2, and 6H15/2 transitions. The variation of optical properties with varying concentrations of dysprosium oxide content in the glasses are reported and discussed. The thermal behavior of Dy3+ doped lithium fluoroborate glasses have been reported by recording DSC thermograms.  相似文献   

12.
Thermal stability of single-crystalline [ZnO]m[Zn0.7Mg0.3O]n multiple quantum wells (MQWs) grown on a-plane sapphire substrates by plasma-assisted molecular beam epitaxy is reported. X-ray diffraction analysis revealed that these MQWs were grown as designed with a fixed Zn0.7Mg0.3O barrier width of and a series of ZnO well widths of . Cathodoluminescence spectra from these MQWs consisted of two major peaks; one was the emission from the bound excitons in Zn0.7Mg0.3O barrier layers, and the other was that from the confined excitons in ZnO well layers. These structural and optical properties were found to be dramatically changed by the ex situ annealing treatments over 700 °C. These changes were presumably due to the onset of phase separation of the Zn0.7Mg0.3O barrier layers with pronounced Mg diffusion toward the ZnO wells.  相似文献   

13.
《Physics letters. [Part B]》2009,679(4):321-329
We present the first measurement of photoproduction of J/ψ and of two-photon production of high-mass e+e pairs in electromagnetic (or ultra-peripheral) nucleus–nucleus interactions, using Au + Au data at . The events are tagged with forward neutrons emitted following Coulomb excitation of one or both Au nuclei. The event sample consists of 28 events with me+e>2 GeV/c2 with zero like-sign background. The measured cross sections at midrapidity of and for me+e[2.0,2.8] GeV/c2 have been compared and found to be consistent with models for photoproduction of J/ψ and QED based calculations of two-photon production of e+e pairs.  相似文献   

14.
We have studied the electronic band structure of (0 0 1) AlN/GaN quantum wells by means of a sp3sd5 empirical tight-binding Hamiltonian with nearest-neighbor interactions, including spin-orbit coupling and the effects of strain together with the surface Green function matching method. We have analyzed quantum wells with a thickness in the range 2 ? n ? 50, n being the number of principal layers of GaN in the well region. Results are presented for the point and the direction of the 2D Brillouin zone. The orbital character and the spatial localization of the different states have been also studied.  相似文献   

15.
This paper reports our new observation of the , 13Δg (v = 2–4), and 23Πg (v = 2–8) states of 6Li7Li by continuous wave perturbation facilitated optical–optical double resonance spectroscopy. Combining our new experimental term values of 6Li7Li with the available experimental data of 6Li2 and 7Li2, molecular constants and potential energy curves by Rydberg–Klein–Rees and direct-potential-fit techniques have been determined. Born-Oppenheimer breakdown parameters of the Li2 13Δg and 23Πg states are calculated.  相似文献   

16.
The vibrational structure of the electronic state of C3 in the region 26 000-30 775 cm−1 has been re-examined, using laser excitation spectra of jet-cooled molecules. Rotational constants and vibrational energies have been determined for over 60 previously-unreported vibronic levels; a number of other levels have been re-assigned. The vibrational structure is complicated by interactions between levels of the upper and lower Born-Oppenheimer components of the state, and by the effects of the double minimum potential in the Q3 coordinate, recognized by Izuha and Yamanouchi [16]. The present work shows that there is also strong anharmonic resonance between the overtones of the ν1 and ν3 vibrations. For instance, the levels 2 1+ 1 and 0 1 + 3 are nearly degenerate in zero order, but as a result of the resonance they give rise to two levels 139 cm−1 apart, centered about the expected position of the 2 1+ 1 level. With these irregularities recognized, every observed vibrational level up to 30 000 cm−1 (a vibrational energy of over 5000 cm−1) can now be assigned. A vibronic level at 30181.4 cm−1, which has a much lower B′ rotational constant than nearby levels of the state, possibly represents the onset of vibronic perturbations by the electronic state; this state is so far unknown, but is predicted by the ab initio calculations of Ahmed et al. [36].  相似文献   

17.
This study investigates the optical anisotropy spectrum in the R-plane (i.e., the -oriented layer plane) of GaN/Al0.2Ga0.8N quantum wells of different widths. The optical matrix elements in the wurtzite quantum wells are calculated using the kp finite difference scheme. The calculations show that the valence band mixing effect produces giant in-plane optical anisotropy in -oriented GaN/Al0.2Ga0.8N quantum wells with a narrow width. The nature of the in-plane optical anisotropy is found to be dependent on the well width. Specifically, it is found that the anisotropy changes from x-polarization to y-polarization as the well width increases.  相似文献   

18.
The high-resolution infrared spectra of DCF3 were reinvestigated in the ν6 fundamental band region near 500 cm−1 and around 1000 cm−1 with the aim to assign and analyze the overtone level of the asymmetric CF3 bending vibration v6 = 2.The present paper reports on the first study of both its sublevels (A1 and E corresponding to l = 0 and ±2, respectively) through the high-resolution analysis of the overtone band and the hot and bands.The well-known “loop method”, applied to and , yielded ground state energy differences Δ(KJ) = E0(KJ) − E0(K − 3,J) for the range of K = 6 to 30.In the final fitting of molecular parameters, we used the strategy of fitting all upper state data together with the ground state rotational transitions.This is equivalent to that calculating separately the and coefficients of the K-dependent part of the ground state energy terms from the combination loops.All rotational constants of the ground state up to sextic order could be refined in the calculation.This led to a very accurate determination of C0 = 0.18924413(25) cm−1, , and also .In the course of analyzing simultaneously the overtone band together with the and ν6 bands, the original assignment of the fundamental ν6 band [Bürger et al., J. Mol. Spectrosc. 182 (1997) 34-49] was found to be incompatible with the present one. Assignments of the (k + 1, l6 = +1)/(k − 1,l6 = −1) levels had to be interchanged, which changed the value of 6 = −0.14198768(26) cm−1 and the sign of the combination of constants C − B −  in the v6 = 1 level to a negative value.  相似文献   

19.
In situ atomic force microscopy (AFM) was used to study the growth behaviour of anglesite (PbSO4) monolayers on the celestite (0 0 1) face. Growth was promoted by exposing the celestite cleavage surfaces to aqueous solutions that were supersaturated with respect to anglesite. The solution supersaturation, βang, was varied from 1.05 to 3.09 (where βang = a(Pb2+) · a(SO42−)/Ksp,ang). In this range of supersaturation, two single anglesite monolayers (3.5 Å in height each) from pre-existent celestite steps were grown. However, for solution supersaturation βang < 1.89 ± 0.06, subsequent multilayer growth is strongly inhibited. AFM observations indicate that the inhibition of a continuous layer-by-layer growth of anglesite on the celestite (0 0 1) face is due to the in-plane strain generated by the slight difference between the anglesite and celestite lattice parameters (i.e. the linear misfits are lower than 1.1%). The minimum supersaturation required to overcome the energy barrier for multilayer growth gave an estimate of the in-plane strain energy: 11.4 ± 0.6 mJ/m2. Once this energy barrier is overcome, a multilayer Frank–Van Der Merwe epitaxial growth was observed.  相似文献   

20.
Growth of epitaxial SrTiO3 (STO) films has been examined on H-terminated Si(1 1 1) with SrO buffer layers. The epitaxial SrO buffer layers have reduced stress on H-terminated Si substrates. On the SrO buffer layers, the STO films grow epitaxially with triple domains at low temperature. Each STO domain has equivalent epitaxial relationship to SrO buffer layers, STO(1 1 0)∥SrO(1 1 1) and .  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号