首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Consistent isobaric vapour–liquid equilibrium data have been measured for 2-butanone + ethanol, 2-butanone + 1-propanol, and 2-butanone + 2-propanol at 20 and 101.3 kPa. The binary systems 2-butanone + ethanol and 2-butanone + 2-propanol present a minimum boiling azeotrope at both pressures, and show that the azeotropic compositions is strongly dependent on pressure. The equilibrium data were correlated using the Wilson, NRTL, and UNIQUAC models for which the parameters are reported.  相似文献   

2.
Consistent vapor–liquid equilibrium data for the ternary system 1-pentanol–1-propanol–water is reported at 101.3 kPa at temperatures in the range of 362–393 K. The VLE data were satisfactorily correlated with UNIQUAC model.  相似文献   

3.
Vapour pressures for 1-methoxy-2-propanol are reported as well as the vapour–liquid equilibrium data in the two binary 2-propanol + 1-methoxy-2-propanol, and diisopropyl ether + 1-methoxy-2-propanol systems, and in the ternary 2-propanol + diisopropyl ether + 1-methoxy-2-propanol system. The data were measured isothermally at 330.00 and 340.00 K covering the pressure range 5–98 kPa. The binary vapour–liquid equilibrium data were correlated using the Wilson, NRTL, and Redlich–Kister equations; resulting parameters were then used for calculation of phase behaviour in the ternary system and for subsequent comparison with experimental data.  相似文献   

4.
Vapour–liquid equilibrium data are reported for the ternary tert-butyl methyl ether+tert-butanol+2,2,4-trimethylpentane and the three binary tert-butyl methyl ether+tert-butanol, tert-butyl methyl ether+2,2,4-trimethylpentane, tert-butanol+2,2,4-trimethylpentane subsystems. The data were measured isothermally at 318.13, 328.20, and 339.28 K covering pressure range 15–100 kPa. Azeotropic data are presented for the tert-butanol+2,2,4-trimethylpentane system. Molar excess volumes at 298.15 K are given for the three binary systems. The binary vapour–liquid equilibrium data were correlated using Wilson, NRTL, and Redlich–Kister equations; the parameters obtained were used for calculation of phase behaviour in ternary system and for subsequent comparison with experimental data.  相似文献   

5.
A theoretical analysis of the accuracy of the volumetric method for the determination of liquid–liquid equilibrium was carried out. The results show that, under certain conditions, this method can be used to investigate systems showing relatively small mutual solubilities. Relations were derived to estimate standard deviations of the equilibrium compositions determined by the volumetric method.

In the experimental part of the work, an apparatus for measurements of mutual solubilities of liquids was constructed. A procedure that enabled us to determine precisely volumes of liquid phases was developed. This procedure and apparatus present the advantage that relatively small amounts of samples are required (approximately 2 × 20 ml). Theoretical conclusions concerning the applicability of the volumetric method were checked by measuring mutual solubilities at 303.15 K in systems methylcyclohexane + N,N-dimethylformamide, 1-butanol + water and dimethyl phthalate + water. Further, the method was used to measure systematically the liquid–liquid equilibrium in systems ethyl acetate + ethylene glycol and phenyl acetate + ethylene glycol at temperatures from 293 to 323 K. Data for these systems were acquired by means of other methods as well and a good agreement was observed on comparison.  相似文献   


6.
Isothermal vapour–liquid equilibria (VLE), solid–liquid equilibria and excess enthalpies have been measured for the systems cyclohexanone + cyclohexanol and 2-octanone + 1-hexanol. Additionally in this paper binary azeotropic data at different pressures for 1-pentanol + 2-heptanone and 1-hexanol + 2-octanone have been determined with the help of a wire band column. Furthermore activity coefficients at infinite dilution for methanol, ethanol, 1-butanol and 1-propanol in 2-octanone at different temperatures have been measured with the help of the dilutor technique. These data together with literature data for alcohol–ketone systems were used to fit temperature-dependent group interaction parameters for the group contribution method modified UNIFAC (Dortmund) and the group contribution equation of state VTPR.  相似文献   

7.
Liquid–liquid equilibrium (LLE) data of water + acetic acid + dimethyl adipate have been determined experimentally at 298.15, 308.15 and 318.15 K. Complete phase diagrams were obtained by determining binodal curve and tie-lines. The reliability of the experimental tie-line data was confirmed by using the Othmer-Tobias correlation. UNIFAC and modified UNIFAC models were used to predict the phase equilibrium in the system using the interaction parameters determined from experimental data of CH2, CH3COO, CH3, COOH, and H2O functional groups. Distribution coefficients and separation factors were evaluated for the immiscibility region.  相似文献   

8.
Liquid–liquid equilibria (LLE) of the multicomponent system water + ethanol + a synthetic reformate (composed of benzene, n-hexane, 2,2,4-trimethylpentane, and cyclohexane) was studied at atmospheric pressure and at 283.15 and 313.15 K. The mutual reformate–water solubility with addition of anhydrous ethanol was investigated. Different quantities of water were added to the blends in order to have a wide water composition spectrum, at each temperature. We conclude from our experimental results, that this multicomponent system presents a very small water tolerance and that phase separation could result a considerable loss of ethanol that is drawn into the aqueous phase. The results were also used to analyse the applicability of the UNIFAC group contribution method and the UNIQUAC model. Both models fit the experimental data with similar low average root mean square deviations (rsmd ≤ 2.05%) yielding a satisfactory equilibrium prediction for the multicomponent system, although the predicted ethanol (rsmd ≤ 4.6%) compositions are not very good. The binary interaction parameters needed for the UNIQUAC model were obtained from the UNIFAC method.  相似文献   

9.
Isobaric vapor–liquid equilibria for the ternary system acetone + methanol + lithium nitrate have been measured at 100 kPa using a recirculating still. The addition of lithium nitrate to the solvent mixture produced an important salting-out effect and the azeotrope tended to disappear for small contents of salt. The experimental data sets were fitted with the electrolyte NRTL model and the parameters of the Mock's model were estimated. These parameters were used to predict the ternary vapor–liquid equilibrium which agreed well with the experimental one.  相似文献   

10.
Isothermal vapour–liquid equilibrium was measured for ethyl ethanoate + 1-butene, +cis-2-butene, +trans-2-butene, +2-methylpropene, +n-butane and +2-methylpropane at 318.4 K with an automated static total pressure measurement apparatus. The experimental data was correlated with the Wilson activity coefficient model. A good agreement between the experiments and the model was achieved. All six binary systems exhibited positive deviation from Raoult's law.  相似文献   

11.
The liquid–liquid equilibrium of water/1-propanol/methyl ethyl ketone (MEK) at 25°C was significantly modified by the presence of dissolved potassium chloride. Water is salted out of the organic phase while MEK is more preferentially salted out of the aqueous phase than 1-propanol. These results in considerable enlargement of the two-phase region and enhancement of the extractive efficiency of MEK for the separation of 1-propanol from its aqueous mixture. Good correlation of the liquid–liquid equilibria (LLE) of the system in the presence of potassium chloride up to saturation was obtained with Tan’s modified NRTL phase model for multicomponent solute–solvent mixtures with the solute–solvent interaction parameters expressed as a third-order polynomial function in salt concentration. Similar to the observation reported for vapour–liquid equilibrium (VLE) of solvent–solute mixtures, salting-in and salting-out of the solvent components from the respective phases can be predicted according to the relative solute–solvent interaction parameters of the solvent components in the two phases.  相似文献   

12.
Isobaric vapor–liquid equilibrium data have been experimentally determined at 101.3 kPa for the binary systems ethanol + ethyl lactate, isopropanol + isopropyl lactate and n-butanol + n-butyl lactate. No azeotrope was found in any of the systems. All the experimental data reported were thermodynamically consistent according to the point-to-point method of Fredenslund. The activity coefficients were correlated with the NRTL and UNIQUAC liquid-phase equations and the corresponding binary interaction parameters are reported. The densities and derived excess volumes for the three mixtures are also reported at 298.15 K.  相似文献   

13.
A high pressure flow-mixing isothermal calorimeter is used to determine the excess molar enthalpies of methylformate + (1-propanol, 2-propanol, 1-butanol, 2-butanol and 1-pentanol) at T = 298.15 K and p = (5.0, 10.0) MPa, and methylformate + 1-propanol at T = 333.15 K and p = 10.0 MPa. The Redlich-Kister equation is fit to the experimental results.  相似文献   

14.
Liquid–liquid phase equilibria (LLE) for the system of water/1,4-dioxane/dihydromyrene (DHM) were investigated experimentally at 343.15, 348.15, 353.15, 358.15 K and atmospheric pressure. The reliability of the experimental tie-lines has been confirmed by using Othmer–Tobias correlation. The NRTL and improved UNIQUAC models were used to correlate the phase equilibria in the system using the interaction parameters determined from experimental data. The root mean square deviation (RMSD) between the observed and calculated mole percents was 0.58%. It is found that NRTL and improved UNIQUAC used for LLE could provide a good correlation.  相似文献   

15.
Liquid–liquid equilibrium data are presented for the pseudoternary systems isooctane–benzene–(90 mass% methanol + 10 mass% water) at 298.15 K and isooctane–benzene–(80 mass% methanol + 20 mass% water) at 298.15 and 308.15 K, under atmospheric pressure. The experimental tie-line data obtained define the binodal curve for each one of the studied systems which depending on the amount of water present show type I or type II liquid–liquid phase diagrams. In order to obtain a general view of the effect of water on the partitioning of methanol and hence on the size of the two-phase region we have also determined experimentally ‘isowater’ tolerance curves for the system isooctane–benzene–methanol at 298.15 K, hence the tie-line data were also obtained for the ternary system. The experimental tie-line data for the four systems studied were correlated with the NRTL and UNIQUAC solution models obtaining a very good reproduction of the experimental behaviour.  相似文献   

16.
《Fluid Phase Equilibria》2005,231(1):99-108
Isobaric vapor–liquid equilibrium (VLE) data were determined at the pressure of 101.3 kPa for binary and ternary systems composed of acetone, ethanol, and 2,2,4-trimethylpentane (isooctane). Minimum boiling azeotropes were found in the acetone + 2,2,4-trimethylpentane and ethanol + 2,2,4-trimethylpentane systems. Azeotropic behavior was not found for the ternary system. Thermodynamic consistency tests were performed for all VLE data. The activity coefficients of the binary mixtures were satisfactorily correlated as function of the mole fraction using the Wilson, NRTL, and UNIQUAC models. The models with their best-fitted parameters were used to predict the ternary vapor–liquid equilibrium. The Wilson model appears to yield the best prediction in boiling temperatures.  相似文献   

17.
Vapor–liquid equilibria (VLE) and vapor–liquid–liquid equilibria (VLLE) data for the carbon dioxide + 1-heptanol system were measured at 293.15, 303.15, 313.15, 333.15 and 353.15 K. Phase behavior measurements were made in a high-pressure visual cell with variable volume, based on the static-analytic method. The pressure range under investigation was between 0.58 and 14.02 MPa. The Soave–Redlich–Kwong (SRK)-EOS coupled with Huron–Vidal (HV) mixing rules and a reduced UNIQUAC model, was used in a semi-predictive approach, in order to represent the complex phase behavior (critical curve, LLV line, isothermal VLE, LLE, and VLLE) of the system. The topology of phase behavior is qualitatively correct predicted.  相似文献   

18.
Vapor–liquid equilibrium (VLE) at 101.3 kPa have been determined for the ternary system ethanol + 2-butanone + 2,2,4-trimethylpentane (isooctane) and its constituent binary systems: ethanol + 2,2,4-trimethylpentane, ethanol + 2-butanone, and 2-butanone + 2,2,4-trimethylpentane. Minimum boiling azeotropes were observed for all these binary systems. No azeotropic behavior was found for the ternary system. Thermodynamic consistency tests were performed for all VLE data. The activity coefficients of the binary mixtures were satisfactorily correlated with the Wilson, NRTL, and UNIQUAC models. The models with their best-fitted binary parameters were used to predict the ternary vapor–liquid equilibrium.  相似文献   

19.
Precise isothermal vapor-liquid equilibrium data at 10, 30, 55 and 70°C for the system water + tert.-pentanol were measured using a computer-operated differential static apparatus. Activity coefficients at infinite dilution were derived from the experimental Px data in the dilute region using a flexible Legendre polynomial, and the vapor-liquid-liquid locus was derived directly from the Px data near the liquid-liquid phase boundary. Heteroazeotropic points were measured directly by distillation using a rotating band column. Furthermore the UNIQUAC and the NRTL models were used to correlate the experimental Px data and to derive the azeotropic data.

Experimental HE data were taken from literature and used together with the experimental Px data to simultaneously fit temperature dependent interaction parameters for UNIQUAC and NRTL. The parameters were used to predict the azeotropic composition over a large temperature range. The results were compared with those of a simple analytical thermodynamic equation using only the pure component vapor pressure data, heats of mixing in the heterogeneous region and the azeotropic composition at one temperature.

Heats of mixing were measured at 140°C with the help of a flow calorimeter in order to determine the slope of HE vs. x1 in the heterogeneous region. The HE data were used to check the reliability of the GE model parameters and the equation to calculate the temperature dependence of the heteroazeotropic composition.  相似文献   


20.
Isobaric (vapour + liquid) equilibrium data have been measured for the (toluene + sulfolane), (ethylbenzene + sulfolane), and (isopropylbenzene + sulfolane) binary systems with a modified Rose-Williams still at 101.33 kPa. The experimental data of binary systems were well correlated by the non-random two-liquid (NRTL) and universal quasi-chemical (UNIQUAC) activity coefficient models for the liquid phase. All the experimental results passed the thermodynamic consistency test by the Herington method. Furthermore, the model UNIFAC (Do) group contribution method was used. Sulfolane is treated as a group (TMS), the new group interaction parameters for CH2–TMS, ACH–TMS and ACCH2–TMS were regressed from the VLE data of (toluene + sulfolane) and (ethylbenzene + sulfolane) binary systems. Then these group interaction parameters were used to estimate phase equilibrium data of the (isopropylbenzene + sulfolane) binary system. The results showed that the estimated data were in good agreement with the experimental values. The maximum and average absolute deviations of the temperature were 4.50 K and 2.39 K, respectively. The maximum and average absolute deviations for the vapour phase compositions of isopropylbenzene were 0.0237 and 0.0137, respectively.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号