首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Reversible morphological changes occur with photoisomerization of azobenzene in Langmuir-Blodgett (LB) films complexed with polycations, which contradicts an implicit assumption of the concept of free volume that two-dimensional film structures are preserved during the photoisomerization. J-aggregates of chromophores are formed by two processes. The first process is "light-induced J-aggregation" in which photoisomerized molecules form J-aggregates. The other process is "triggered J-aggregation," in which photoisomerization of one of the components triggers J-aggregation of another chemical species in the mixed films. Both processes of J-aggregation are in many cases accompanied by large morphological changes of the films. However, LB films fabricated using processes under isobaric conditions do not change their morphology during light-induced J-aggregation and are patterned with J-aggregates using ultraviolet illumination through a photomask. Phase separation in mixed LB films gives rise to two-dimensional patterns, which are used to fabricate templates by using an amphiphilic silane-coupling agent as one of the components in the mixed LB films. Nanopatterns are also fabricated.  相似文献   

2.
Photoactive film material of long-chain azobenzene derivative, p-(omega-trimethylammoniodecyloxy)-p'-octyloxyazobenzene bromide (TAOAB), was fabricated into a Langmuir-Blodgett (LB) film by a polyion-complex technique using poly(sodium 4-styrenesulfonate) as a polyanion. To investigate the effect of the packing state of the azobenzene chromophore on its orientation and cis-trans isomerization, TAOAB was mixed with methyl stearate in the LB film matrix at various mole fractions (X(TAOAB)), and structural characterizations were subsequently carried out by means of Fourier transform infrared and ultraviolet-visible spectroscopies, X-ray diffraction analysis, and atomic force microscopy. The results obtained show that as the degree of packing increases, both the azobenzene chromophores and the hydrocarbon chains orient more perpendicularly to the surface of the LB film. In addition, reversible cis-trans photoisomerization of TAOAB took place upon alternate irradiation with UV and visible light even in a mixed LB film with the chromophores in a dense lateral packing state. In the process of thermal cis-to-trans isomerization, we found that the reaction rate is strongly affected by the packing state of TAOAB at 20 degrees C, reflecting the differences in steric hindrance among LB films of various X(TAOAB). In addition, higher activation energy was obtained for thermal cis-to-trans isomerization when the free volume around the chromophores became smaller.  相似文献   

3.
选用(口恶)花菁染料为光敏剂,将其镶嵌到双炔酸LB膜中,利用Ar~+离子激光514.5 nm照射LB膜,观察到双炔酸LB膜的光敏聚合及(口恶)花菁染料荧光的猝灭,对其光敏聚合机理进行了讨论。  相似文献   

4.
We described the use of block copolymer micelles as building blocks for the incorporation of water-insoluble photochromic species of azobenzene and the fabrication of multilayer films by alternating the deposition of the block copolymer micelles of poly(styrene-b-acrylic acid), incorporating azobenzene and poly(diallyl-dimethylammonium chloride). The azobenzene incorporated into the block copolymer micelles can undergo a reversible photoisomerization under the irradiation of UV and visible light sources. An interesting finding is that the photoisomerization of the azobenzene in the multilayer film is faster than it is in its normal solid film, but very similar to that in its diluted solution. Furthermore, the amount of azobenzene incorporated into the micelles can influence the photoisomerization rates in the films. Therefore, we expect that the block copolymer micelles may provide a proper microenvironment for the photoisomerization of azobenzene and the as-prepared polyelectrolyte/block copolymer micelle thin films will be useful for photoswitching materials.  相似文献   

5.
To control the swelling of polymer membrane by photoirradiation amphiphilic azoaromatic polymer membranes were prepared and a photoinduced change in the swelling degree of water was investigated. The azobenzene moiety in the side chain of the polymer was isomerized from trans form to cis form by ultraviolet (UV) irradiation and reverse isomerization was found by visible light irradiation. The swelling degree of the polymer membrane for water in the dark was decreased by UV radiation, and when visible light irradiation was carried out in the polymer membrane the degree of swelling recovered to the original level. The swelling degree decreased with an increase in the mole fraction of the azobenzene moiety in the dark and under UV irradiation. The deswelling degree of the polymer membrane by UV irradiation also decreased with an increase in the mole fraction of the azobenzene moiety. This reversible change in the swelling degree was considered to be caused by the photoisomerization of the azobenzene moiety in the polymer membrane.  相似文献   

6.
《Liquid crystals》2000,27(8):1011-1016
Recently, we reported on a light-induced anchoring transition of an azobenzene nematic from planar to homeotropic alignment. In the proposed model of the transition, the changes in shape of the liquid crystal molecules and of their net dipole moment, due to the photoisomerization, were considered to play a vital role in the occurrence of the transition. In order to assess the validity of this model, a study of the anchoring behaviour of nematic guest-host liquid crystal mixtures containing two photochromic dyes, 3,3'- and 4,4'-substituted azobenzenes, was carried out. The dyes have very similar molecular structures to that of the azobenzene nematic previously studied, and their molecules, having a linear shape in the trans-form, maintained this shape after photoisomerization in the case of the 3,3'-azo dye, and changed it to bent in the case of the 4,4'-azo dye. The dyes possessed similar net dipole moments that increased substantially after photoisomerization, resulting in a preferential adsorption of their cis-isomers on the solid substrate. However, only the mixture containing the 4,4'-azo dye exhibited an anchoring transition from planar to homeotropic alignment upon illumination with unpolarized UV light, a behaviour in excellent agreement with the prediction of the model for the light-induced anchoring transition. An anchoring transition from random planar to uniform planar alignment was found to take place in the mixtures when linearly polarized UV light was used, requiring, however, a different exposure time for the two dyes.  相似文献   

7.
Recently, we reported on a light-induced anchoring transition of an azobenzene nematic from planar to homeotropic alignment. In the proposed model of the transition, the changes in shape of the liquid crystal molecules and of their net dipole moment, due to the photoisomerization, were considered to play a vital role in the occurrence of the transition. In order to assess the validity of this model, a study of the anchoring behaviour of nematic guest-host liquid crystal mixtures containing two photochromic dyes, 3,3'- and 4,4'-substituted azobenzenes, was carried out. The dyes have very similar molecular structures to that of the azobenzene nematic previously studied, and their molecules, having a linear shape in the trans-form, maintained this shape after photoisomerization in the case of the 3,3'-azo dye, and changed it to bent in the case of the 4,4'-azo dye. The dyes possessed similar net dipole moments that increased substantially after photoisomerization, resulting in a preferential adsorption of their cis-isomers on the solid substrate. However, only the mixture containing the 4,4'-azo dye exhibited an anchoring transition from planar to homeotropic alignment upon illumination with unpolarized UV light, a behaviour in excellent agreement with the prediction of the model for the light-induced anchoring transition. An anchoring transition from random planar to uniform planar alignment was found to take place in the mixtures when linearly polarized UV light was used, requiring, however, a different exposure time for the two dyes.  相似文献   

8.
The conductivity and luminescence of conjugated polymers may be combined with the photoisomerization capability of azobenzene materials to achieve unique properties for a variety of applications, particularly if conjugated polymers with azobenzene side chains are processed as nanostructured films. In this study, we report on Langmuir–Blodgett (LB) films of a polythiophene-bearing azobenzene moieties, which displayed photoluminescence, thermochromism, electroactivity, and photoinduced birefringence. The latter three properties were enhanced in the LB films, as compared to spin-coated films of the polyazothiophene, and this has been attributed to differences in film morphology that could be probed with atomic force microscopy.  相似文献   

9.
We have investigated the synthesis and ultrathin film forming properties of α,ω‐diamine derivatives. The amphiphiles were synthesized as precursors to the formation of ionene polymers. Two materials were investigated: oligothiophene and azobenzene functional groups. These type of materials are of great interest for the preparation of ultrathin film layers with applications for photochemical regulation of liquid crystal (LC) orientation, optical storage media, and electroluminescent displays. Azobenzene and its derivatives are well known photochemical systems exhibiting the reversible cis‐trans photoisomerization. Conjugated oligothiophene derivatives, exhibit interesting optical and electronic properties for applications such as light emitting diodes (LED)s, Schottky diodes, and thin film field‐effect transistors (TFT). The two amphiphiles behaved very differently as Langmuir monolayers and LB films. Dye aggregation was observed with the azobenzene derivatives compared with the oligothiophenes.  相似文献   

10.
The azocalixarenes is a novel chromogenic compound and their spectra properties have been reported. A number of them have been applied as selective ionophores in extractive process1 or as selective ligands in ion selective electrodes and optical sensors based on spectra changes2. Some amphiphilic azocalixarene derivatives with hydrophobic long alkyl chains were synthesized and their interfacial behaviors at the air / water interface have also been investigated3. However, the photochromism of t…  相似文献   

11.
《Supramolecular Science》1997,4(3-4):369-374
Four novel, amphiphilic, N-acylaminoazobenzene derivatives containing a sulfonyl group and a β-alanine moiety were synthesized and their mono- and multilayers were prepared by the Langmuir-Blodgett (LB) technique. The opto-physical properties of the LB multilayers were investigated. Some relationship between the chemical structure of the azobenzenes and photosensitivity of their LB multilayers has been found. Reversible trans/cis photoisomerization was observed on alternate irradiation with ultraviolet and visible light of LB multilayers from azobenzenes modified by the introduction of a second aliphatic chain in the N-acylamino fragment as well as by introduction of the bulky N,N′-dicyclohexyl urea moiety.  相似文献   

12.
An amphiphilic dendron containing an azobenzene ring at the focal point and the l-glutamate peripheral groups was designed. Its monolayer formation and host-guest reaction with cyclodextrins at the air/water interface and the properties of the transferred Langmuir-Blodgett (LB) films were investigated. The individual dendron, although without any long alkyl chains, could still form a stable monolayer at the air/water interface because of the good balance between hydrophilic and hydrophobic parts within the molecule. When cyclodextrin (CyD) was added to the subphase, a host-guest reaction occurred in situ at the air/water interface. The inclusion of the focal azobenzene moiety into the cavity of cyclodextrin decreased the packing of the aromatic ring and also led to the diminishment of the molecular area. Both the films formed at the surface of pure water and aqueous cyclodextrins were transferred onto solid substrates. Nanofiber structures were obtained for the film from the water surface as a result of the packing of the azobenzene groups, and circular domains were obtained for the film transferred from the aqueous CyD phases. The film transferred from the water surface showed an exciton couplet in the absorption band of azobenzene, whereas a negative Cotton effect was obtained for the film from CyD subphases. It was found that the supramolecular chirality in the LB film transferred from water was due to the transfer of the molecular chirality to the assemblies whereas that from the CyD subphase was due to the inclusion of azobenzene into the chiral cavity. Interestingly, the film from the water surface was photoinactive, whereas a reversible optical and chiroptical switch could be obtained for the film from the α-CyD subphase. The work provided a way to regulate the assembly and functions of organized molecular films by taking advantage of the interfacial host-guest reaction.  相似文献   

13.
A hybrid film of layered niobate and an organic amphiphile was prepared by the Langmuir-Blodgett (LB) method. Trimethylammonium-exchanged perovskite-type niobates ((CH(3))(3)NHSr(2)Nb(3)O(10)) were exfoliative to form an aqueous suspension. A monolayer of octadecylamine was produced on such an aqueous dispersion as a template for a hybrid film. A hybrid film was transferred as a Y-type LB film onto a hydrophilic glass plate or an ITO substrate. The structure of a deposited film was investigated with X-ray diffraction (XRD), Fourier transform infrared (FT-IR), and atomic force microscopy (AFM) measurements, indicating a layer-by-layer structure with a single or double sheet of niobate as an inorganic composite. From the cyclic voltammogram on an ITO electrode modified with the Y-type 10 layered film, the lower edge of the conduction band of a niobate layer was determined to be - 0.6 V (vs Ag/AgCl). ac impedance and dc measurements were carried out on 1, 5, and 10-layered LB films (2 mm (electrode spacing) x 8 mm (width)) with aluminum electrodes. The freshly deposited samples behaved as an insulator under the illumination of 280 nm light (2.04 x 10(16) quanta s(-1)). Photoconductivities appeared, however, when they were preirradiated with a 150 W Xe lamp (ca. 2 x 10(18) quanta s(-1)) for 0.5-8.5 h. The process was denoted as photomodification. From the FT-IR and XRD results, it was deduced that the photomodification of LB films caused the decomposition of organic templates (octadecylammonium) accompanied by the collapse of layer-by-layer structures. dc analyses on the 5- and 10-layered films after photomodification also showed that they behaved as a photosemiconductor under UV light illumination.  相似文献   

14.
We have found a thermal hysteresis in the photoresponsivity of a Langmuir film for the first time. The Langmuir film of an amphiphilic spiropyran, 1',3'-dihydro-3',3'-dimethyl-6-nitro-1'-octadecyl-8-(docosanoyloxymethyl)spiro[2H-1-benzopyran-2,2'-(2H)-indole] (SP) was fabricated at 13 degrees C at 10 mN m-1, followed by heating to a given temperature. UV irradiation of this film caused only the isomerization of SP to the corresponding merocyanine (MC) up to 29 degrees C. Light-induced J-aggregation of MC occurred at 30 degrees C. On the other hand, once the film was heated to 30 degrees C, light-induced J-aggregation was observed down to 27 degrees C. The hysteresis should be related with the phase transitions that occur in the bulk of SP at similar temperatures. No significant morphological change occurred by light-induced J-aggregation in the Langmuir-Blodgett (LB) film of SP by the present method, in contrast to the case of the LB films fabricated under isothermal conditions at 30 degrees C. This feature enabled us to pattern the LB film with J-aggregate of MC by UV irradiation through a photomask of lines with a width of 5 mum each.  相似文献   

15.
An amphiphilic styrylquinoxaline derivative, 3-(4-(hexadecyloxy)styryl)quinoxalin-2(1H)-one (SQC16), was newly synthesized to investigate their photochemical and gas responsive properties in organized molecular films. It was observed that SQC16 can spread as a monolayer on the subphases with various pH values and be subsequently transferred onto solid substrates. While SQC16 showed predominantly reversible trans-cis photoisomerization in methanol solution, it showed both photoisomerization and photodimerization in Langmuir-Blodgett (LB) films. Photodimerization was only observed in the LB film due to the face-to-face arrangement of the functional headgroup in the LB film, and the process was irreversible. In addition, the LB film showed acidichromism, i.e., when the film was exposed to HCl gas its color changed from yellow to red, and the color could be recovered after exposure to NH(3) gas. The process was reversible and could be repeated many times. An interesting surface morphology of the SQC16 LB film was revealed. It was observed that SQC16 can form nanowire architecture in the transferred one-layer LB film. This morphology can be changed upon photoirradiation or in gas reactions. Through the atomic force microscopy measurements it was suggested that the photodimerization predominantly occurred from the nanowire structures, while during the acidichromism the reaction occurred preferentially in the flat region. X-ray diffraction studies revealed that while layer distance showed a slight change for the LB film during acidichromism and photoreaction, the layer structure of SQC16 LB film was retained.  相似文献   

16.
A novel monomer, ethyl 4‐[4‐(11‐methacryloyloxyundecyloxy)phenyl azobenzoyl‐oxyl] benzoate, containing a photoisomerizable N?N group was synthesized. The monomer was further diblock copolymerized with methyl methacrylate. Amphiphilic diblock copolymer poly(methyl methacrylate‐block‐ethyl 4‐[4‐(11‐methacryloyloxyundecyloxy)phenyl azobenzoyl‐oxyl] benzoate ( PMMA ‐ b ‐ PAzoMA ) was synthesized using atom transfer radical polymerization. The reverse micelles with spherical construction were obtained with 2 wt % of the diblock copolymer in a THF/H2O mixture of 1:2. Under alternating UV and visible light illumination, reversible changes in micellar structure between sphere and rod‐like particles took place as a result of the reversible E‐Z photoisomerization of azobenzene segments in PMMA ‐ b ‐ PAzoMA . Microphase separation of the amphiphilic diblock copolymer in thin films was achieved through thermal and solvent aligning methods. The microphases of the annealed thin films were investigated using atom force microscopy topology and scanning electron microscopy analyses. © 2010 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 48: 1142–1148, 2010  相似文献   

17.
New heterocyclic TTF compounds 1a-c and 2 with an azobenzene moiety were described. The oxidation potential of 1a could be reversibly modulated by alternating UV and visible light irradiation. As a result, a molecular switch with UV/visible light as the inputs and the electrochemical signal as the output was achieved. Moreover, it was found that the influence of the azobenzene photoisomerization on the electronic property of the TTF unit became stronger with shorter spacers in compounds 1a-c.  相似文献   

18.
Thin films of fullerodendron (C(60)(Gn-COOMe) (n = 0.5, 1.5, 2.5)), which was synthesized from fullerene and anthracenyl poly(amido amine) dendron with methyl ester terminals and different generations (G), were fabricated by the Langmuir-Blodgett (LB) and adsorption techniques. It was characterized by X-ray reflectometry that the LB films possessed well-ordered structure, although the adsorption method led to random orientation of molecules. As to C(60)(G0.5-COOMe) and C(60)(G1.5-COOMe), the LB films took a four-layer structure consisting of a double layer of molecules, and fullerene moieties exist in the interior of the LB films. On the other hand, C(60)(G2.5-COOMe) led to a two-layer structure in which the fullerene moieties were at the air side and the dendron moieties were at the substrate side. With increasing generation of dendron, the monolayer formation ability at the air/water interface as amphiphilic molecule strengthens and the amphiphilic property becomes superior to the fullerene-fullerene attractive interaction that prevents the monolayer formation. Furthermore, in the case of C(60)(G0.5-COOMe) and C(60)(G1.5-COOMe), the reduction peak in cyclic voltammetry of the LB film remained even after UV light irradiation. On the contrary, the peak of the C(60)(G2.5-COOMe) LB film disappeared, indicating that molecular arrangement in the films affects electrochemical properties.  相似文献   

19.
We describe here the highly fluorescent self-assembled spherical aggregates of an azobenzene molecule without a specific ionic component in organic solution under UV light illumination. The first stage of trans-to-cis photoisomerization by UV light at 365 nm was followed by a significant enhancement, up to about 1000 times, of the emission from an azobenzene molecule (CN2Azo) with a long alkyl chain, which is due to the spontaneous formation of spherical organic aggregates. Fluorescence emission was further enhanced in the dark, and the quantum yield increased to about 0.3. We also report the significant size and structural changes of the aggregates, from nanometer-scale micelle-like aggregates to micrometer-scale vesicular aggregates, obtained only from the variation in the concentration of an azobenzene derivative. The light-driven azobenzene aggregates show the size and structure dependences of emission wavelength from violet-blue to green-yellow.  相似文献   

20.
The surface properties of a nonionic photoresponsive surfactant that incorporates the light-sensitive azobenzene group into its tail have been investigated. Cis-trans photoisomerization of this azobenzene group alters the ability of the surfactant to pack into adsorbed monolayers at an air/water interface or into aggregates in solution, thereby causing a significant variation in surface and bulk properties following a change in the illumination conditions. NMR studies indicate that a solution left in the dark for an extended period of time contains the trans isomer almost exclusively, whereas samples exposed to light of fixed wavelength eventually reach a photostationary equilibrium in which significant amounts of both isomers are present. At concentrations well above the cmc but under different illumination conditions (dark, UV light, visible light), freshly formed surfaces exhibit profoundly different surface tension trajectories as they approach essentially identical equilibrium states. This common equilibrium state corresponds to a surface saturated with the trans (more surface active) isomer. The dark sample shows a simple, single-step relaxation in surface tension after the creation of a fresh interface, whereas the UV and visible samples exhibit a more rapid initial decrease in tension, followed by a plateau of nearly constant tension, and finally end with a second relaxation to equilibrium. It is hypothesized that this behavior of the UV and visible samples is caused by competitive adsorption between the cis and trans isomers present in these mixtures. The cis surfactant reaches the interface more quickly, leading to an initially cis-dominated interface having a tension value corresponding to the intermediate plateau, but is ultimately displaced by the trans isomer. Fluorescence studies are used for cmc determination in the samples, and the results suggest that the two isomers segregate into distinct aggregate phases. The critical concentration associated with the formation of cis-rich aggregates is much larger than that of the trans-rich aggregates, which accounts for the faster diffusion of the cis isomer to a fresh interface. Models of the diffusion and adsorption of surfactant are developed. These consider the role of aggregates in the adsorption process by examining the limiting behavior of three aggregate properties: dissolution rate, mobility, and ability to incorporate into the interface. These models are used to analyze the surface tension relaxation of dark and UV samples, and the predictions are found to be in agreement with the observed characteristic relaxation time scales for these samples, though the results are inconclusive regarding the specific role of aggregates. High-intensity illumination focused on a surface saturated with surfactant is used to drive photoisomerization of the adsorbed surfactant, and rapid, substantial changes in surface tension result. These changes are consistent with proposed conformations of the adsorbed surfactant and with monolayer studies performed with a Langmuir film balance.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号