首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 406 毫秒
1.
Stability of imperfect elastic cylindrical shells which are subjected to uniform axial compression is analyzed by using the finite element method. Multiple interacting localized axisymmetric initial geometric imperfections, having either triangular or wavelet shapes, were considered. The effect of a single localized geometric imperfection was analyzed in order to assess the most adverse configuration in terms of shell aspect ratios. Then two or three geometric imperfections of a given shape and which were uniformly distributed along the shell length were introduced to quantify their global effect on the shell buckling strength. It was shown that with two or three interacting geometric imperfections further reduction of the buckling load is obtained. In the ranges of parameters that were investigated, the imperfection wavelength was found to be the major factor influencing shell stability; it is followed by the imperfection amplitude, then by the interval distance separating the localized imperfections. In a wide range of parameters this last factor was recognized to have almost no effect on buckling stresses.  相似文献   

2.
Nonlinear buckling optimization is introduced as a method for doing laminate optimization on generalized composite shell structures exhibiting nonlinear behaviour where the objective is to maximize the buckling load. The method is based on geometrically nonlinear analyses and uses gradient information of the nonlinear buckling load in combination with mathematical programming to solve the problem. Thin-walled optimal laminated structures may have risk of a relatively high sensitivity to geometric imperfections. This is investigated by the concepts of “worst” imperfections and an optimization method to determine the “worst” shape imperfections is presented where the objective is to minimize the buckling load subject to imperfection amplitude constraints. The ability of the nonlinear buckling optimization formulation to solve the laminate problem and determine the “worst” shape imperfections is illustrated by several numerical examples of composite laminated structures and the application of both formulations gives useful insight into the interaction between laminate design and geometric imperfections.  相似文献   

3.
This paper deals with the non-linear response of sandwich curved panels exposed to thermomechanical loadings. The mechanical loads consist of compressive/tensile edge loads, and a lateral pressure while the temperature field is assumed to exhibit a linear variation through the thickness of the panel. Towards obtaining the equations governing the postbuckling response, the Extended Galerkin’s Method is used. The numerical illustrations concern doubly curved, circular cylindrical and as a special case, flat panels, all the edges being simply supported. Moveable and immoveable tangential boundary conditions in the directions normal to the edges are considered and their implications upon the thermomechanical load-carrying capacity are emphasized. Effects of the radii of curvature and of initial geometric imperfections on the load-carrying capacity of sandwich panels are also considered and their influence upon the intensity of the snap-through buckling are discussed. It is shown that in special cases involving the thermomechanical loading and initial geometric imperfection, the snap-through phenomenon can occur also in the case of flat sandwich panels.  相似文献   

4.
针对薄壁圆筒壳结构轴压屈曲载荷的缺陷敏感性以及真实几何缺陷的不确定性,提出一种基于实测缺陷数据和极大熵原理的初始缺陷建模与屈曲载荷预测方法。首先,将初始几何缺陷视为二维随机场,并利用实测缺陷数据和Karhunen-Loève展开法将初始缺陷的随机场建模转化为随机向量的建模;其次,利用极大熵方法确定随机向量的概率分布;最后,基于所构建的初始缺陷随机模型,利用MCMC抽样方法和确定性屈曲分析方法,进行随机屈曲分析并给出基于可靠度的屈曲载荷折减因子。数值算例表明,与直接假设随机场相关结构的方法相比,本文方法的结果是对薄壁圆筒壳屈曲载荷的一个更无偏估计。  相似文献   

5.
针对含初始缺陷和脱层损伤的复合材料层合梁的轴向冲击动力屈曲问题进行了分析。基于Hamilton原理导出了考虑初始缺陷、轴向和横向惯性、横向剪切变形以及转动惯性影响时含脱层损伤复合材料梁的非线性动力屈曲控制方程;基于B-R准则,采用有限差分方法求解了受轴向冲击载荷作用下含脱层损伤复合材料梁的动力屈曲问题;讨论了冲击速度、初始几何缺陷、铺层角度以及脱层长度等因素对复合材料层合梁动力屈曲的影响。  相似文献   

6.
单层网壳结构是缺陷敏感结构,初始几何缺陷不同对"网壳截面优化结果"有显著影响,该文研究了网壳杆件截面取值与缺陷分布、结构极限承载力之间的关系.结果表明:经截面优化设计的网壳结构最不利应力最早并且一直出现在初始几何缺陷较大处;优化寻优结果与初始几何缺陷分布有直接关系,增大缺陷较大处杆件截面能显著提高结构承载力;由于缺陷随机分布,经截面优化设计的网壳结构须校核其在不同缺陷下的稳定承载力以确保结构安全.  相似文献   

7.
Summary A study of the postbuckling and imperfection sensitivity of fixed-end and free-end struts on a Winkler elastic foundation is carried out. The configuration and stability of the postbuckling paths bifurcating from the critical points are analysed. For the most part of foundation stiffness, the corresponding postbuckling paths are shown to be falling with respect to load and be unstable. This indicates that, for almost all values of foundation stiffness, the buckling loads of the struts will be sensitive to imperfections. We also obtain imperfection sensitivity of the struts with respect to geometric imperfections having the shape of buckling modes. Received 30 October 1998, accepted for publication 30 March 1999  相似文献   

8.
本文将线性样条有限条理论推广到大挠度弹塑性范围,建立了样条有限条非线性分析方法,成功地分析了纵向加筋板结构局部与整体稳定相关作用对其极限承载能力的影响.采用弧长法和Newton-Raphson迭代求解非线性刚度方程,可获得包括峰值点在内的一条完整的荷载—挠度曲线.分析中考虑了加筋板结构的初曲和残余应力的影响,使得计算结果更具实用价值.  相似文献   

9.
This paper deals with the effects of initial geometric uni-directional imperfections on vibrations of a pressurized spherical shell or spherical cap. The analysis is based upon shallow shell theory. Frequency vs applied pressure interaction curves are plotted for various values of the imperfection amplitude. Imperfections are shown to have a severe effect in reducing the natural frequencies similar to that demonstrated in the buckling behavior of spherical shells.  相似文献   

10.
11.
IntroductionInrecentyears,fiber_reinforcedcompositelaminatedpanelshavebeenwidelyusedintheaerospace,marine ,automobileandotherengineeringindustries .Theproblemofbucklingandpostbucklingofcylindricalpanelsunderaxialcompressionortorsionhasbeenextensivelystudied .Incontrast,theliteratureoncylindricalpanelsunderpressureloadingisrelativelyspares.Thesestudiesincludealinearbucklinganalysis (Singeretal.[1]) ,anonlinearbucklinganalysi(YamadaandCroll[2 ]) ,anelastoplasticbucklinganalysisusingreducedstif…  相似文献   

12.
The non-linear non-planar dynamic responses of a near-square cantilevered (a special case of inextensional beams) geometrically imperfect (i.e., slightly curved) and perfect beam under harmonic primary resonant base excitation with a one-to-one internal resonance is investigated. The sensitivity of limit-cycles predicted by the perfect beam model to small geometric imperfections is analyzed and the importance of taking into account the small geometric imperfections is investigated. This was carried out by assuming two different geometric imperfection shapes, fixing the corresponding frequency detuning parameters and continuation of sample limit-cycles versus the imperfection parameter. The branches of periodic responses for perfect and imperfect (i.e. small geometric imperfection) beams are determined and compared. It is shown that branches of periodic solutions associated with similar limit-cycles of the imperfect and perfect beams have a frequency shift with respect to each other and may undergo different bifurcations which results in different dynamic responses. Furthermore, the imperfect beam model predicts more dynamic attractors than the perfect one. Also, it is shown that depending on the magnitude of geometric imperfection, some of the attractors predicted by the perfect beam model may collapse. Ignoring the small geometric imperfections and applying the perfect beam model is shown to contribute to erroneous results.  相似文献   

13.
Theoretical and experimental non-linear vibrations of thin rectangular plates and curved panels subjected to out-of-plane harmonic excitation are investigated. Experiments have been performed on isotropic and laminated sandwich plates and panels with supported and free boundary conditions. A sophisticated measuring technique has been developed to characterize the non-linear behavior experimentally by using a Laser Doppler Vibrometer and a stepped-sine testing procedure. The theoretical approach is based on Donnell's non-linear shell theory (since the tested plates are very thin) but retaining in-plane inertia, taking into account the effect of geometric imperfections. A unified energy approach has been utilized to obtain the discretized non-linear equations of motion by using the linear natural modes of vibration. Moreover, a pseudo arc-length continuation and collocation scheme has been used to obtain the periodic solutions and perform bifurcation analysis. Comparisons between numerical simulations and the experiments show good qualitative and quantitative agreement. It is found that, in order to simulate large-amplitude vibrations, a damping value much larger than the linear modal damping should be considered. This indicates a very large and non-linear increase of damping with the increase of the excitation and vibration amplitude for plates and curved panels with different shape, boundary conditions and materials.  相似文献   

14.
The buckling of an axially loaded cylindrical shell is considered when imperfection components corresponding to all of the classical buckling modes are taken into consideration. The analysis represents an extension of Koiter's axisymmetric solution and in the asymptotic sense due to Koiter the imperfections considered are as general as possible. The results obtained reveal many interesting aspects of shell buckling which arize for various imperfection forms. The buckling behaviour which results is associated with both bifurcation and limit point critical states.  相似文献   

15.
The bifurcation of a toroidal shell segment with initial imperfection which are subjected to lateral or hydrostatic pressure is studied under the assumption that the initial imperfection are Gaussian random stress-free displacement whose mean and autocorrelation function are given. We use a perturbation scheme developed by Amazigo [Amazigo, J.C., 1971. Buckling of stochastically imperfect columns on nonlinear elastic foundation. Quart. Appl. Math. 403–491]. A simple approximate asymptotic expression is obtained for the bifurcation load for small magnitudes of the imperfection. The result is compared with results obtained earlier under secondary bifurcation analysis for the imperfections in the shape of the buckling mode and the results in the literature, which shows some significant differences as a result of inclusion of extra terms in the buckling equation.  相似文献   

16.
A postbuckling analysis is presented for a functionally graded cylindrical panel of finite length subjected to axial compression in thermal environments. Material properties are assumed to be temperature dependent, and graded in the thickness direction according to a simple power law distribution in terms of the volume fractions of the constituents. The governing equations of a functionally graded cylindrical panel are based on Reddy’s higher order shear deformation shell theory with a von Kármán–Donnell-type of kinematic nonlinearity and including thermal effects. Two cases of the in-plane boundary conditions are considered. The nonlinear prebuckling deformations and initial geometric imperfections of the panel are both taken into account. A boundary layer theory of shell buckling, which includes the effects of nonlinear prebuckling deformations, large deflections in the postbuckling range, and initial geometric imperfections of the shell, is extended to the case of functionally graded cylindrical panels under axial compression. A singular perturbation technique is employed to determine the buckling loads and postbuckling equilibrium paths. The numerical illustrations concern the postbuckling behavior of axially loaded, perfect and imperfect, functional graded cylindrical panels with two constituent materials and under different sets of thermal environments. The influences played by temperature rise, volume fraction distributions, the character of in-plane boundary conditions, transverse shear deformation, panel geometric parameters, as well as initial geometric imperfections are studied.  相似文献   

17.
受圆形表面单面约束的点锚固圆环热屈曲分析   总被引:1,自引:0,他引:1  
应用W.T.Koiter的初始后屈曲理论,研究了受圆形混凝土表面单面约束的点锚固圆环的热屈曲问题,根据混凝土容器壁的几何约束条件,假设了圆环的合理屈曲模状,得出了圆环在两锚固点之间发生屈曲的临界温度,并研究了其后屈曲性态和缺陷敏感性。结果表明,临界点和后屈曲路径的平衡均为稳定的,圆环对于与屈曲模态形状相同的缺陷是不敏感的。  相似文献   

18.
A general method for The evaluation of the effect of shape imperfections on the buckling strength of thin shells and thin-shell-like structures is presented. At first the prebuckiing equilibrium state of the structure is determined by means of power series expansions in the magnitude of the shape imperfection. Then the buckling load is determined by means of the classical theory of stability. The method requires the solution of only linear equations with linear boundary conditions. It is equally well applicable to any pattern of shape imperfections and can give an estimate of the accuracy of the evaluation.  相似文献   

19.
研究了几何缺陷、荷载非均匀分布和支座沉陷对圆弧拱面内屈曲的影响.基于能量的变分原理推导了考虑缺陷的微分方程,得到了外荷载和轴力的关系式以及径向位移的表达式.从微分方程出发用摄动法对屈曲荷载的缺陷敏感性进行了分析,得到了屈曲荷载的近似表达式.结果表明近似解与精确解吻合良好;正对称屈曲荷载对正对称缺陷参数十分敏感;反对称缺陷参数对反对称屈曲荷载影响显著而正对称缺陷参数影响很小.  相似文献   

20.
吴春雷  赵阳 《实验力学》2007,22(2):119-124
薄壳结构的屈曲通常对初始缺陷十分敏感,因此对几何初始缺陷的精确测量是高质量的壳体屈曲试验的必要环节。本研究旨在开发一套基于激光测距仪的初始缺陷测量系统,以实现对壳体结构的快速、精确、非接触的测量。本文详细介绍该系统的设计思想及实现方法,包括激光测距仪的选择、转动与直线运动的实现、数据采集与计算机自动控制技术等。利用该系统对两个柱支承钢筒仓模型进行了仔细的初始缺陷三维测量,验证了系统的适用性和可靠性。文中还提出了利用二重傅立叶分解技术分析实测缺陷的方法。本文成果与方法为薄壳结构屈曲试验奠定了基础。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号