首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
摆动方式对水翼输入功率的影响   总被引:1,自引:0,他引:1  
利用投影浸入边界法,研究了不同主动摆动方式对水翼输入功率的影响。计算模型采用二维NACA0012翼型,雷诺数Re=800。最大摆角θ0=75°,摆动频率f的变化范围为0.1Hz~0.2Hz,非正弦摆动参数β的变化范围为1~3。首先,研究摆动频率f和非正弦摆动参数β对平均输入功率的影响,研究发现,平均输入功率随着f和β值的增加而增加,但当f0.16 Hz,β2.5时,平均输入功率急剧增加。其次,在摆动频率f=0.16 Hz时,研究不同非正弦摆动参数β下力矩系数、输入功率系数以及升阻力系数随时间的变化规律,研究发现,随着β值的增加,峰值输入功率也逐渐增加,而且β值影响峰值输入功率出现的位置。最后,研究不同β值下,变化的尾流发展对输入功率的影响,认为水翼上下表面产生的后缘涡与升阻力有关系,水翼上表面的负涡对水翼摆动产生阻力,而下表面的负涡对水翼摆动产生升力,从而对水翼摆动的输入功率产生影响。  相似文献   

2.
仿生扑翼飞行机器人翅型的研制与实验研究   总被引:6,自引:0,他引:6  
模仿昆虫和小鸟飞行的扑翼飞行机器人将举升、悬停和推进功能集于一个扑翼系统,与固定翼和旋翼完全不同,因此研究只能从生物仿生开始。生物飞行的极端复杂性使得进行完整和精确的扑翼飞行分析非常复杂,因此本文在仿生学进展基础上,通过一些合适的假设和简化,建立了仿生翅运动学和空气动力学模型,并以此为基础研制了多种翅型。研制了气动力测量实验平台,对各种翅型进行了实验研究。实验结果表明,研制的翅型都能产生一定的升力,其中柔性翅具有较好的运动性能和气动性能,并且拍动频率和拍动幅度对升力有较大影响。  相似文献   

3.
弹性振动对翼型气动特性影响的数值模拟   总被引:1,自引:0,他引:1  
通过求解雷诺平均非定常Navier-Stokes方程,采用数值模拟方法计算了俯仰和沉浮振动对NACA0012翼型平均气动特性的影响.结果表明:对于俯仰运动而言,在迎角13α≤时的升力°和力矩曲线的线性段部分,振幅角的变化对动态平均升力系数和动态平均力矩系数的影响不明显,与静态时的情况基本一致;当迎角14α≥时,翼型振动的平均升力系数和动态平均力矩系数小°于静态时的情况.同一迎角条件下的俯仰振动频率越高时,其动态的平均升力系数和动态平均力矩系数越大,频率较高时的失速迎角相对于频率较低时的情况有所推迟,但相对于静态的失速迎角而言,不同频率下的动态失速迎角均提前.对于沉浮运动而言,动态平均升力系数随振幅和频率的增加而减小,动态失速迎角随振幅和频率的增大而提前.  相似文献   

4.
利用计算流体力学软件Fluent对不同雷诺数(Re=100,3900,3.5×10~6)下二维椭圆柱绕流进行了数值模拟研究,分析了不同轴长比(2b/2a=cosθ,θ=0°,15°,30°,45°,60°)下椭圆柱绕流的特性。通过对比尾部涡流情况、升力系数C_L、阻力系数C_D以及斯特劳哈尔数St初步发现:由于椭圆形截面偏流线型的特点,在三种雷诺数下随着θ的增大椭圆柱绕流尾涡强度减小,流场的变化使圆柱表面的压力系数减小,最终导致圆柱的升力系数幅值与阻力系数均值减小。而斯特劳哈尔数St在三种雷诺数下的变化不同,随着θ的增大,层流雷诺数(Re=100)下St值减小;亚临界雷诺数(Re=3900)下St值在45°处轻微上扬,在60°处明显减小;超临界雷诺数(Re=3.5×10~6)下St值增大。  相似文献   

5.
常思源  肖尧  李广利  田中伟  崔凯 《力学学报》2022,54(10):2760-2772
高压捕获翼新型气动布局在高超声速设计状态下具有较好的气动性能, 新升力面的引入使其在亚声速条件下也具有较大的升力, 但在亚声速下的稳定特性还有待研究. 基于高压捕获翼气动布局基本原理, 在机身-三角翼组合体上添加单支撑和捕获翼, 设计了一种参数化高压捕获翼概念构型. 以捕获翼和机体三角翼上/下反角为设计变量, 采用均匀试验设计、计算流体力学数值计算方法及Kriging代理模型方法, 研究了0° ~ 10°攻角状态下不同翼反角对高压捕获翼构型亚声速气动特性的影响, 重点分析了升阻特性、纵向和横航向稳定性的变化规律以及流场涡结构等. 结果表明, 小攻角状态下翼反角对升阻比的影响比大攻角更加显著, 捕获翼上反时, 升阻比略微增大, 下反则升阻比减小; 三角翼上反时, 升阻比减小, 下反则升阻比先略微增大后缓慢减小; 翼反角对纵向稳定性的总体影响较小, 捕获翼上反会稍微提高纵向稳定性, 而三角翼上反则会降低纵向稳定性; 捕获翼或三角翼上反都会增强横向稳定性, 下反则减弱横向稳定性, 但大攻角状态时, 三角翼上反角过大对提升横向稳定性作用有限; 捕获翼上反航向稳定性增强, 下反航向稳定性则减弱, 而三角翼下反对提升航向稳定性的整体效果比上反更加显著.   相似文献   

6.
1.运动方程的建立 空泡在非均匀流场中的运动特点是空泡与液体间有相对运动,从而它不再保持球形.本文统一把空泡对液体的相对位移、空泡变形作为广义坐标向量,利用Lagrange方程建立空泡的运动方程. 取固定坐标系x_1 o_1 y_1,随液体运动的坐标系xoy,x轴与流动方向重合;rcθ为确定泡壁运动的球座标系.设在任意时刻t,空泡对称轴与x轴成a角,与c点运动方向一致,c为泡壁与对称轴所夹线段的中点.将极角θ(0≤θ≤π)分成m等分,对应于θ_i=  相似文献   

7.
基于非线性振动理论建立了气膜-密封环系统角向摆动的动力学模型,将气膜厚度表示为含有摆角的变量,在介质压力 p0=4.5852MPa、转速 nr=10380 r/min 的特例下计算并拟合非线性气膜的角向刚度,得到了一个含二次、三次项的非线性受迫振动微分方程。在无外激励情况下,通过求解 Floquet 指数讨论了系统分岔问题,分析了螺旋角对系统稳定性的影响,给出了使干气密封系统稳定的螺旋角的范围(α<75°10′34″),并求得在特例下螺旋角α=75°10′34″时系统发生 Hopf分岔。这与已有文献中利用 Runge-Kutta 法研究的结果是一致的,从而验证了本文方法的正确性。改变工况后,对系统分岔问题进行了讨论,得到了系统分岔时的螺旋角数值,结果表明其螺旋角数值基本不变(α为75°9′54″或75°11′1″),说明改变工况后其分岔点位置不变。本文结果可为干气密封的动态优化设计提供理论指导。  相似文献   

8.
为探究层状板岩动态破坏机理及能耗规律,通过分离式霍普金森压杆(Split Hopkinson Pressure Bar)系统和高速摄像仪开展了巴西劈裂试验。研究了不同层理角度和加载率下板岩动态拉伸能量耗散规律以及岩体破坏模式、破坏过程与能量耗散之间的关系。通过研究得到如下主要结论:(1)随着加载率的提高,板岩动态拉伸强度和耗散能密度均呈现指数增长的趋势;(2)当层理角度θ为0°时,岩体主要是沿层理面拉伸破坏,破裂面形成破裂带,耗散能低;当层理角度θ为15°时,破裂面为剪切破裂带,而θ为30°和45°是拉剪复合破坏,两者耗散能较高;当层理角度θ为60°、75°、90°时,岩样主要是沿非层理面拉伸破坏,破裂面形成环状和中心起裂两种,耗散能最大;(3)随着加载率的提高,岩体耗散能密度越大,岩体吸收的能量越多,分形维数D值越大,岩体越破碎。  相似文献   

9.
对圆柱附加固定整流罩的已有研究表明,它在降低升阻力和抑制涡激振动方面有优良的效果。但固定整流罩具有方向敏感性,当来流方向改变后效果会受到显著影响,甚至起到增加升阻力和加剧涡激振动的反作用。本文给圆柱附加了圆弧直径为40mm,形状夹角α分别为30°、45°、60°、75°和90°五种尺寸的旋转整流罩,并进行了风洞实验。其中整流罩可以自由地围绕圆柱轴线旋转。实验结果表明:旋转整流罩在流体力产生的力矩作用下,旋转至一个偏离尾流中心线固定角度的动态平衡位置,而平衡位置偏转角δ随着形状夹角α的增大而增大。附加旋转整流罩后,相对单圆柱能够提高尾迹区域压力,并能使时均阻力和脉动升力分别在α=30°和α=75°时获得最大43.5%和67.0%的降低。此外,对于小α(α≤60°)情况,漩涡脱落频率明显高于单圆柱情况,而对于大α(α≥75°)情况,则与单圆柱情况相接近。所有旋转整流罩升力主频的幅值较之单圆柱有了很大程度的降低,可见旋转整流罩在抑制漩涡脱落方面有很好的效果。  相似文献   

10.
基于不可压缩纳维-斯托克斯(Navier-Stokes)方程和改进的延迟脱体涡模拟方法(improved delayed detached edd ysimulation method,IDDES),数值研究了深海多立柱浮式平台在海流作用下的涡激运动响应特性.以张力腿平台为对象,计算了该平台在0°,22.5°和45°流向角下的横向和艏摇涡激运动响应,分析了涡激运动响应幅度、频率比随约化速度的变化规律,研究了涡激运动响应能量的分布趋势.数值预报结果与模型实验数据吻合良好,证实了数值模型的有效性;研究发现,当约化速度介于7.0和14.0之间时,横向运动发生锁频,运动幅值稳定在0.2D~0.4D(D为立柱宽)之间,而艏摇涡激运动和约化速度呈线性递增关系;在横向运动锁频区间内,由于艏摇激振力矩主要受升力主导,艏摇频率与横向运动频率相同;相对于0°来流,22.5°和45°流向下的涡激运动频率更高,但艏摇运动能量仅为0°流向角下的10%.基于计算结果,进一步分析了多立柱平台涡激运动中的三维流场结构.   相似文献   

11.
模型昆虫翼作非定常i运动时的气动力特性   总被引:9,自引:0,他引:9  
兰世隆  孙茂 《力学学报》2001,33(2):173-182
基于Navier-Stokes方程的数值解,研究了一模型昆虫翼在小雷诺数(Re=100)下作非定常运动时的气动力特性.这些运动包括翼启动后的常速转动,快速加、减速转动,常速转动中快速上仰(模拟昆虫翼的上挥或下拍、翻转等运动).有如下结果在小雷诺数下,模型昆虫翼以大攻角(α=35°)作常速转动运动时,由于失速涡不脱落,可产生较大的升力系数.其机理是翼转动时,翼尖附近(该处线速度大)上翼面压强比翼根附近(该处线速度小)的小得多,因而存在展向压强梯度,同时存在着沿展向的离心力,此展向压强梯度和离心力导致的展向流动在失速涡的轴向方向,其可避免失速涡脱落.模型昆虫翼在快速加、减速转动和快速上仰运动中,虽然雷诺数小,但由于在短时间内产生了大涡量,也可产生十分大的气动力,例如在快速上仰运动中,升力系数可大于10.  相似文献   

12.
昆虫飞行的高升力机理   总被引:30,自引:0,他引:30  
孙茂 《力学进展》2002,32(3):425-434
对近年来关于昆虫产生非定常高升力的研究进行了综述和归纳.这方面的工作对生物学研究和微型飞行器等微型机械的仿生设计有重要意义.研究表明:果蝇等昆虫翅膀的拍动运动可产生很大的非定常升力,其平均值是定常值的2~3倍,足够平衡昆虫的重量,并有较大的富余用于机动飞行;产生高升力有三个因素:一是拍动开始阶段翅的快速加速运动,二是拍动中的不失速机制,三是拍动结束阶段翅的快速上仰运动.人们从能耗的角度考察了这些非定常高升力机制的正确性和可行性.当作悬停飞行的果蝇用以上机制产生平衡其重量的升力时,其比功率(支持单位身体质量所需的功率)约为29W/kg, 生化/机械效率约为17%. 这些值与人们基于对昆虫肌肉力学特性的研究所预估的值接近.果蝇前飞时,其比功率随速度变化的曲线是一J形曲线,而不是象飞机或鸟的那样是一U形曲线;这与人们基于昆虫新陈代谢率的测量数据所推断的结果一致.对于蜻蜒等(功能上)有前、后两对翅膀的昆虫,有以下初步结果:翅的下拍主要产生升力,上挥主要产生推力;下拍时的平均升力系数可达2~3,十分大,上挥时的平均推力系数可达1~2, 也很大,它们主要由非定常效应产生;前、后翅的相互干扰并未起增大升力和推力的作用,反而有一定的不利作用.   相似文献   

13.
为了探究动静组合应力场作用下邻近巷道背爆侧裂纹缺陷的扩展规律,采用动静加载透射式动态焦散线方法进行了模拟实验,并结合裂纹尖端的动态应力强度因子和能量释放率进行了分析。实验结果表明:在动静荷载作用下,邻近巷道背爆侧裂纹缺陷处也成为巷道主要扰动区,且爆炸荷载对背爆侧预制裂纹的起裂起主导作用;p=0.2 MPa时的相同动静组合应力场中,背爆侧预制裂纹的扩展位移差异与裂纹的倾角有关,当θ=75°时,爆炸应力波无法驱动裂纹起裂;在相同爆炸荷载作用下,θ=30°时,较小竖向荷载对裂纹的扩展具有抑制作用,且抑制作用随所施加的竖向荷载增加而增大,当p=0.4 MPa时,裂纹无法起裂;裂纹最终扩展位移,与裂纹尖端动态应力强度因子在极大值上下振荡变化的持续时间,或在裂纹扩展阶段能量释放率积累量,呈正相关。  相似文献   

14.
周华  胡世良 《力学季刊》2007,28(1):28-33
本文用FLUENT软件模拟了结冰后NACA 0012翼型周围流场的变化,并与结冰前NACA 0012翼型的气动性能进行了对比.工作中首先以未结冰的NACA 0012翼型(干净翼型)为标准模型进行了数值验证计算,再以经过检验的方法计算结冰模型,并与结冰风洞试验数据进行了对比.本文计算攻角为0°~20°,温度为250.37K,雷诺数为2,400,000,冰型为圆形坚冰.通过对比升力阻力性能,发现与干净翼型相比,结冰翼型的最大升力系数大约减少了50%,阻力系数增加了约65%,失速攻角降低了4°.结冰后翼型提前失速是造成气动性能恶化的主要原因.  相似文献   

15.
翼梢小翼若干几何参数对翼尖涡流场的影响研究   总被引:2,自引:0,他引:2  
梁益明  姚朝晖  何枫 《应用力学学报》2012,29(5):548-552,628
为解决使用CFD方法研究翼尖涡流场时存在的传统湍流模式难以准确计算翼尖涡的强旋流场的问题,本文使用添加旋转修正的SST-RC模式计算了光滑机翼的翼尖涡流场,并通过与实验结果进行对比,验证了该模式对于翼尖涡流场的有效性。然后使用该模式计算了翼梢小翼后的翼尖涡流场,发现翼梢小翼作为一种涡扩散器能够将原来强度集中的翼尖涡破碎分解成两个旋涡,这两个旋涡互相作用,加速了翼尖涡的粘性耗散。通过改变小翼的三个几何参数:根弦长Cr、倾斜角θ、外撇角,计算了不同外形翼梢小翼后的翼尖涡流场,同时引入一个翼尖涡的强度尺度S,考察S在尾缘下游的分布,发现添加小翼后S普遍下降了10%~20%。改变小翼根弦长对S的衰减影响不太明显,不同根弦长对应的S值相差2%~4%,Cr=0.7c时效果最佳;改变小翼倾斜角θ对S的影响在初始时差别较大,不同倾斜角对应的S相差约9%,在下游后期S差别较小,相差约3%,θ=20°时效果最佳;与倾斜角θ类似,改变小翼外撇角对S的影响在初始时差别较大,不同外撇角对应的S相差约10%,在下游后期S差别较小,相差约1%,=5°时效果最佳。  相似文献   

16.
为了探究垂向间距和攻角对双蝠鲼在沿垂向分布集群滑翔时的水动力性能影响,根据蝠鲼的实际外形建立了蝠鲼计算模型,设置了4种间距排布即0.25, 0.5, 0.75, 1倍体厚排布以及9种攻角状态即-8°~8°,随后借助Fluent软件进行了双蝠鲼变攻角、变垂向间距的集群滑翔数值模拟,结合流场压力云图以及速度云图对集群系统平均升/阻力以及集群中各单体的升/阻力进行了分析.数值计算结果表明:双蝠鲼沿垂向分布在攻角范围为-8°~8°进行集群滑翔时系统平均阻力均高于单体滑翔时所受阻力.单体在集群滑翔过程中获得减阻收益,当双蝠鲼以负攻角集群滑翔时,下方蝠鲼阻力减小,且垂向间距越小,减阻效果越明显;当以正攻角集群滑翔时,上方蝠鲼获得减阻收益.当双蝠鲼以负攻角滑翔时,系统平均升力大于单体滑翔时所受升力;当双蝠鲼以负攻角滑翔时,系统平均升力小于单体滑翔时所受升力,系统平均升力几乎不受垂向间距影响.下方蝠鲼升力始终大于上方蝠鲼升力,但随着垂向间距的增大,升力差距逐渐减小.  相似文献   

17.
非旋转钝锥高超声速双平面拍摄风洞自由飞试验   总被引:3,自引:0,他引:3  
蒋增辉  宋威  陈农 《力学学报》2015,47(3):406-413
在高超声速下(6 马赫) 开展了双平面拍摄风洞自由飞试验,对非旋转钝锥在小攻角下的运动特性和圆锥摆动问题进行了研究. 试验结果表明,虽然只预置了攻角而无侧滑角,模型仍然全部出现了圆锥摆动,且在观察窗范围内侧滑角幅值均大于攻角幅值. 模型角运动虽均处于小于10° 的小攻角和小侧滑角状态,但阻尼力矩项呈现较为明显的非线性,而静力矩项的非线性较弱,近似为线性. 5 组实验中,有1 组模型的角运动可能趋于极限平面运动或者是攻角幅值较小的极限圆锥运动,另外4 组试验模型角运动显示出了趋于极限圆锥运动的趋势. 尾端盖对模型的角运动影响不明显,而尾部对称布置的片条状凸起物对整个角运动幅值变化的稳定性存在明显影响,有凸起物的两组模型角运动幅值波动明显较小.   相似文献   

18.
本文依据线弹性力学原理,用复变函数法求得在拉伸载荷下有限宽平板斜裂纹问题的K_Ⅰ和K_Ⅱ,并采用最大剪应变判据((d~2ε_θ)/(dθ~2)<0及(ε_θ)max与K_R相应),求得裂纹扩展角及当量Ⅰ型应力强度因子K_((?)q),再用能量准则求得失稳时的临界应力及裂纹容限.用此方法对几种初始角的几何斜裂纹有限宽平板的剩余强度作了计算,计算结果与有关文献中的数据和试验值相比,开裂角、临界应力及裂纹容限的误差均满足工程要求(2~7%).为进行二维薄壁结构的损伤容限设计,本文提供了剩余强度分析的工程方法及计算程序.  相似文献   

19.
为观察粘性效应对物面压力分布的影响,并验证 CFD 数值模拟方法的计算结果,设计了翼-身-舵组合体模型,利用航天空气动力技术研究院的FD-20炮风洞,在马赫数Ma分别取6、8且攻角α分别取0o、10o、20o的条件下进行了风洞测压试验,同时用Euler方程和N-S方程计算了模型的表面压力并与试验结果进行了比较。结果表明:除少数测点外,弹身、弹翼、舵面及弹身-弹翼干扰区的 Euler方程和 N-S方程计算结果都比较一致,除了攻角α=20°时的弹翼外,计算结果都与试验结果吻合较好。攻角α=20°的极小展弦比三角弹翼,由于侧前缘脱涡等分离现象的存在,实验值普遍高于计算值10%~15%,但变化趋势一致。因此,在采用CFD数值模拟与工程计算相结合的方法进行气动加热或非定常气动力的计算中,采用Euler方程代替N-S方程求解边界层外缘参数和当地流参数是合理的。  相似文献   

20.
以S809翼型为研究对象,用CFD数值模拟计算的方法研究了在失速条件下,风力机翼型上下表面同时开缝的被动控制策略对翼型空气动力学特性的影响。采用基于速度耦合的SIMPLEC算法进行数值模拟,将四种常用的湍流模型(Spalart-Allmaras、k-e、k-w、k-w-SST)在12°和24°攻角下的计算结果和实验数据对比,得出了最优于翼型计算的湍流模型为k-w-SST。分析了缝隙位置、宽度和斜率对翼型气动性能的影响。结果表明:当开缝位置位于分离点附近时,翼型气动性能最优;当缝隙宽度为弦长的2%时,翼型气动性能最优;当缝隙和弦线的夹角为75°时,翼型气动性能最优,且在攻角超过24°时开缝对翼型的气动性能有不利影响。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号