首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 531 毫秒
1.
梁霄  Harish BHATT 《数学学报》2019,62(4):663-672
本文针对时空分数阶非线性薛定谔方程,提出了应用Padé近似逼近Mittag-Leffler函数的指数时间差分格式,讨论了提高格式计算效率的方法.本文在具有各种参数的时空分数阶非线性薛定谔方程上进行了数值实验,实验结果说明了所提出方法的准确性、有效性和可靠性.  相似文献   

2.
讨论了基于Caputo导数的Miller-Ross序列导数的分数阶微分方程的稳定性.根据Laplace变换,得到分数阶微分方程的解;应用Mittag-Leffler函数的渐近展开,讨论了方程的稳定性.分两部分:齐次方程与非齐次方程.  相似文献   

3.
本文在局部分数阶导数定义的基础上给出了高阶局部分数阶导数定义,并据此得到了一般形式的分数阶Taylor公式.用该公式给出了分数阶光滑函数线性和二次插值公式余项的表达式,并进一步导出了分段线性插值的收敛阶估计.针对分数阶导数临界阶计算困难的问题,本文利用线性插值余项设计了一种外推算法,能够比较准确地求出函数在某点的局部分数阶导数的临界阶.最后通过编写算法的Mathematica程序,验证了理论分析的正确性,并用实例说明了算法的有效性.  相似文献   

4.
研究了一类离散分数阶神经网络的Mittag-Leffler稳定性问题.首先, 基于离散分数阶微积分理论、神经网络理论,提出了一类离散分数阶神经网络.其次,利用不等式技巧和离散Laplace变换,通过构造合适的Lyapunov函数,得到了离散分数阶神经网络全局Mittag-Leffler稳定的充分性判据.最后,通过一个数值仿真算例验证了所提出理论的有效性.  相似文献   

5.
通过采用分数阶积分与导数的复合,把分数阶常微分方程转化为积分方程.构造出迭代格式,证明它的收敛性,进一步给出近似解的误差估计.并给出数值例子.  相似文献   

6.
第一部分,介绍分数阶导数的定义和著名的Mittag—Leffler函数的性质.第二部分,利用单调迭代方法给出了具有2序列Riemann—Liouville分数阶导数微分方程初值问题解的存在性和唯一性.第三部分,利用上下解方法和Schauder不动点定理给出了具有2序列Riemann—Liouville分数阶导数微分方程周期边值问题解的存在性.第四部分,利用Leray—Schauder不动点定理和Banach压缩映像原理建立了具有n序列Riemann—Liouville分数阶导数微分方程初值问题解的存在性、唯一性和解对初值的连续依赖性.第五部分,利用锥上的不动点定理给出了具有Caputo分数阶导数微分方程边值问题,在超线性(次线性)条件下C310,11正解存在的充分必要条件.最后一部分,通过建立比较定理和利用单调迭代方法给出了具有Caputo分数阶导数脉冲微分方程周期边值问题最大解和最小解的存在性.  相似文献   

7.
高兴华  李宏  刘洋 《计算数学》2021,43(4):493-505
本文考虑了分布阶时间分数阶扩散波动方程,其中时间分数阶导数是在Caputo意义上定义的,其阶次$\alpha,\beta$分别属于(0,1)和(1,2).文中提出了在计算上行之有效的数值方法来模拟分布阶时间分数阶扩散波动方程.在时间上,通过中点求积公式把分布阶项转换为多项的时间分数阶导数项,并且利用$L1$和$L2$公式来近似Caputo分数阶导数;空间上使用Galerkin有限元方法进行离散.给出了基于$H^1$范数的有限元解的稳定性和误差估计的详细证明,最后的数值算例结果说明了理论分析的正确性以及有效性.  相似文献   

8.
本文研究了常系数线性分数阶微分方程组的求解问题.利用逆Laplace变换,Jordan标准矩阵和最小多项式,得到矩阵变量Mittag-Leffler函数的三种不同的计算方法,包含了常系数线性一阶微分方程组的解.  相似文献   

9.
利用分数阶导数算子-∞D_t~β研究线性分数阶振动系统在谐波激励下的稳态响应.采用复指数函数形式的谐波激励,利用待定函数法得到与激励同频率的稳态响应,以及幅频关系和相频关系.讨论了分数阶导数项对刚度和阻尼的影响.  相似文献   

10.
研究计算Riemann-Liouville (RL)分数阶积分和导数的数值算法.首先,分析了RL分数阶积分和导数的定义式,由于定义式中包含一个积分瑕点,使RL分数阶积分和导数难于计算.然后,给出了一种去掉积分瑕点的方法,在此基础上设计出计算RL分数阶积分和导数的数值算法,并证明了此数值算法具有一阶精度.最后,给出了计算实例,计算结果说明提出的算法是有效的.  相似文献   

11.
The main motive of this article is to study the recently developed Atangana-Baleanu Caputo (ABC) fractional operator that is obtained by replacing the classical singular kernel by Mittag-Leffler kernel in the definition of the fractional differential operator. We investigate a novel numerical method for the nonlinear two-dimensional cable equation in which time-fractional derivative is of Mittag-Leffler kernel type. First, we derive an approximation formula of the fractional-order ABC derivative of a function tk using a numerical integration scheme. Using this approximation formula and some properties of shifted Legendre polynomials, we derived the operational matrix of ABC derivative. In the author of knowledge, this operational matrix of ABC derivative is derived the first time. We have shown the efficiency of this newly derived operational matrix by taking one example. Then we solved a new class of fractional partial differential equations (FPDEs) by the implementation of this ABC operational matrix. The two-dimensional model of the time-fractional model of the cable equation is solved and investigated by this method. We have shown the effectiveness and validity of our proposed method by giving the solution of some numerical examples of the two-dimensional fractional cable equation. We compare our obtained numerical results with the analytical results, and we conclude that our proposed numerical method is feasible and the accuracy can be seen by error tables. We see that the accuracy is so good. This method will be very useful to investigate a different type of model that have Mittag-Leffler fractional derivative.  相似文献   

12.
In this paper, a new approximation method for fractional differential equations based on Mittag-Leffler function is developed. Finite Mittag-Leffler function and its fractional-order derivatives are investigated. An efficient technique for solving linear and nonlinear fractional order differential equations is developed. The proposed method combines Mittag-Leffler collocation method and optimization technique. Error estimation of the approximation is stated and proved. We present numerical results and comparisons of previous treatments to demonstrate the efficiency and applicability of the proposed method. Making use of small number of unknowns, the resulting solution converges to the exact one in the linear case and it has a very small error in the nonlinear case.  相似文献   

13.
In this paper, we shall discuss the properties of the well-known Mittag-Leffler function, and consider the existence and uniqueness of solution of the initial value problem for fractional differential equation involving Riemann-Liouville sequential fractional derivative by using monotone iterative method.  相似文献   

14.
In this paper, we shall discuss the properties of the well-known Mittag-Leffler function, and consider the existence and uniqueness of the solution of the periodic boundary value problem for a fractional differential equation involving a Riemann-Liouville fractional derivative by using the monotone iterative method.  相似文献   

15.
In this paper, efficient numerical schemes are proposed for solving the water wave model with nonlocal viscous term that describe the propagation of surface water wave. By using the Caputo fractional derivative definition to approximate the nonlocal fractional operator, finite difference method in time and spectral method in space are constructed for the considered model. The proposed method employs known 5/2 order scheme for fractional derivative and a mixed linearization for the nonlinear term. The analysis shows that the proposed numerical scheme is unconditionally stable and error estimates are provided to predict that the second order backward differentiation plus 5/2 order scheme converges with order 2 in time, and spectral accuracy in space. Several numerical results are provided to verify the efficiency and accuracy of our theoretical claims. Finally, the decay rate of solutions is investigated.  相似文献   

16.
In this paper, a scheme is developed to study numerical solution of the space- and time-fractional Burgers equations with initial conditions by the variational iteration method (VIM). The exact and numerical solutions obtained by the variational iteration method are compared with that obtained by Adomian decomposition method (ADM). The results show that the variational iteration method is much easier, more convenient, and more stable and efficient than Adomian decomposition method. Numerical solutions are calculated for the fractional Burgers equation to show the nature of solution as the fractional derivative parameter is changed.  相似文献   

17.
利用Mittag-Leffler函数的相关性质和积分变换方法,研究了分数阶Hopfield神经网络(FHNN)的稳定性,给出了相应的充分性条件,并通过实例仿真验证了结论的正确性.  相似文献   

18.
This paper presents numerical solutions for the space‐ and time‐fractional Korteweg–de Vries equation (KdV for short) using the variational iteration method. The space‐ and time‐fractional derivatives are described in the Caputo sense. In this method, general Lagrange multipliers are introduced to construct correction functionals for the problems. The multipliers in the functionals can be identified optimally via variational theory. The iteration method, which produces the solutions in terms of convergent series with easily computable components, requiring no linearization or small perturbation. The numerical results show that the approach is easy to implement and accurate when applied to space‐ and time‐fractional KdV equations. The method introduces a promising tool for solving many space–time fractional partial differential equations. © 2007 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq 2007  相似文献   

19.
The stochastic solution to diffusion equations with polynomial coefficients is called a Pearson diffusion. If the time derivative is replaced by a distributed order fractional derivative, the stochastic solution is called a distributed order fractional Pearson diffusion. This paper develops a formula for the covariance function of distributed order fractional Pearson diffusion in the steady state, in terms of generalized Mittag-Leffler functions. The correlation function decays like a power law. That formula shows that distributed order fractional Pearson diffusions exhibits long range dependence.  相似文献   

20.
In 2015 Caputo and Fabrizio suggested a new operator with fractional order, this derivative is based on the exponential kernel. Earlier this year 2016 Atangana and Baleanu developed another version which used the generalized Mittag-Leffler function as non-local and non-singular kernel. Both operators show some properties of filter. However the Atangana and Baleanu version has in addition to this, all properties of fractional derivative. In this work, we aimed to represent the model by Allen–Cahn with both derivatives in order to see their difference in a real world problem. Both modified models will be solved numerically via the Crank–Nicholson scheme and their numerical simulations are presented to check the effectiveness of the both kernels.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号