首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A simple sensing method for simultaneous measurement of temperature and strain is investigated by using a Sagnac fiber loop mirror composed of a polarization-maintaining photonic crystal fiber (PM-PCF) incorporating an erbium-doped fiber (EDF). Amplified spontaneous emission created by a pumped EDF is transmitted to a Sagnac fiber loop mirror. The interference between two counter-propagating signals in a Sagnac fiber loop mirror generates a periodic transmission spectrum with respect to wavelength. When external temperature is increased, the transmission peak power reduces because the amplified spontaneous emission of the EDF is decreased by the applied temperature change (0.04 dB/°C). The peak wavelength is shifted into the shorter wavelength because of the negative temperature dependence of the birefringence of the PM-PCF (0.3 pm/°C). As the applied strain increases, the peak wavelength of the transmission spectrum of the Sagnac loop mirror incorporating the EDF shifts into a longer wavelength (1.3 pm/με) because the phase change of the proposed sensing probe is directly proportional to the applied strain. The transmission peak power, however, is not changed by the applied strain. Since the source and the sensing probe are integrated, the overall system configuration is significantly simplified without requiring any additional broadband light source. Therefore, it is possible to simultaneously measure temperature and strain by monitoring the variation of transmission peak power and peak wavelength, respectively.  相似文献   

2.
A hybrid configuration of Sagnac and modal interferometer is proposed to obtain high extinction ratio (ER). Firstly, a modal interferometer based on core-offset splicing of three sections of single mode fiber is obtained through manually controlling the fusion parameters. Then the modal interferometer is inscribed into a Sagnac loop, which can obtain a higher ER by carefully adjusting the polarization controller (PC). There is about 10 dB extinction ratio higher than the modal interferometer. The higher the extinction ratio is, the sharper the bottom of waveform will be, so the wavelength shifts can be measured more accurately when sensing temperature, pressure or other parameters. The measured sensitivity of temperature is 48.67 pm/°C in the band of 1550 nm. It also can be applied in strain measurement, vibration measurement and so on.  相似文献   

3.
周锐  张菁  忽满利  冯忠耀  高宏  杨扬  张敬花  乔学光 《物理学报》2012,61(1):14216-014216
提出了一种可用于振动检测的新型光纤光栅传感技术. 用偏振控制器和高双折射保偏光纤构建成Sagnac环, 结合掺铒光纤、单模光纤和隔离器, 形成了单波长光纤激光器, 由粘有光纤Bragg光栅的悬臂梁作为传感探头, 并利用Sagnac环本身的线性边缘, 解调振动信号. 阐述了Sagnac环原理及其产生的边缘效应, 并进行了数值模拟计算, 对振动信号进行了检测实验, 检测系统从L1到L1+L2之间对应的周期可调, 灵敏度高达38.2 μ W/nm, 线性度为0.9996, 动态范围在40–70 dB, 可满足振动传感检测的技术参数要求. 关键词: 光纤光学 振动检测 保偏光纤Sagnac环 光纤激光器  相似文献   

4.
A new high-birefringence (Hi-Bi) fiber torsion sensor demodulated by a Hi-Bi fiber Bragg grating (FBG) is proposed in this study. The twisted Hi-Bi fiber sensor characteristics are analyzed using the Jones matrix. The intensity ratio from two reflected Bragg wavelengths is associated with the twist angle of the measured Hi-Bi fiber. It is found that the twist angle resolution is estimated at around 0.3° under ±0.1 dB readout from an optical spectrum analyzer if the polarization state of the light source is stable. The advantages of this new torsion sensor are: (1) insensitivity to intensity variations from the light source, (2) insensitivity to the torsion gauge length, and (3) absolute measurement in the twist angle. However, the polarization state of light in the proposed method needs to be controlled, and any birefringence change in the twisted Hi-Bi fiber needs to be prevented.  相似文献   

5.
A optical filter based on Sagnac interferometer was proposed to be acted as a comb filter with equal frequency spacing and good signal to noise ratio (SNR), which was composed of an 8.14 m stress-induced Hi-Bi (high-birefringence) PM (polarization-maintaining) fiber. Using this multi-wavelength Sagnac comb filter and a gain flattening Sagnac filter that made the output spectra flattening at different pump powers, a 25-channel multi-wavelength all-fiber source were successfully generated with channel spacing of 0.8 nm with respect to the center wavelength at 1550 nm and flattened gain about ±1 dB peak deviation. The channel spacing can be further reduced to 0.4 nm to produce a DWDM (dense wavelength division multiplexing) source, simply by increasing the Hi-Bi fiber to be 16.28 m. It can be used in many applications such as WDM (wavelength division multiplexing), optical amplifiers with a high SNR, narrow band filters and optical sensors.  相似文献   

6.
A fiber sensor configuration suitable for discrimination of temperature and strain is presented. The sensor head is composed of two parallel concatenated Sagnac loops based on character-1 shaped polarization-maintaining fiber (PMF). The two Sagnac loops include different sections of character-1 shaped PMFs, and show different sensitivity to temperature and strain. By monitoring the wavelength shift of the two dips in the transmission spectrum, simultaneous measurement of temperature and strain is obtained. The sensitivity for strain and temperature are measured to be 14.46 pm and ? 0.54 nm.  相似文献   

7.
A temperature sensor based on the unbalanced Hi-Bi fiber Sagnac interferometer is analyzed in the temperature interval 15 250 C. It is shown that the sensitivity of such a sensor exhibits irreversible changes at temperatures higher than 200 C. To achieve this, it is proposed to anneal the fiber at 200 C for 1.5 h to avoid hysteresis and extend the measured temperature interval. Measurements were done for the polymer-coating-induced birefringence and the residual stresses causing hysteresis. It is also shown that the sensor sensitivity is reduced by 27 % when stresses are removed.  相似文献   

8.
娄淑琴*  鹿文亮  王鑫 《物理学报》2013,62(9):90701-090701
基于所研制的侧漏型光子晶体光纤,提出并构建了出一种同时检测扭转角度 和扭转方向的高灵敏度Sagnac干涉仪型光纤扭转传感器.顺时针扭转时, 传感器传输谱向短波长方向偏移;逆时针扭转,向长波长方向偏移. 对传感器扭转特性的实验研究结果表明,构成Sagnac干涉仪的侧漏型光子晶体光纤的长度, 对扭转敏感系数和扭转角度测量范围起着决定性作用.当光纤长度较短时, 扭转传感器具有较大的扭转灵敏度,但扭转角度测量范围较小;光纤长度增加时,扭转灵敏度减小, 扭转角度测量范围增大.当构成Sagnac干涉仪的侧漏型光子晶体光纤长度为14.85 cm时, 传感器的扭转敏感系数可达到0.9354 nm/(°),扭转角度测量范围为-90°—90°; 光纤长度为32 cm时,最大扭转敏感系数降为0.2132 nm/(°), 扭转角度测量范围扩展至-180°—180°. 采用二维测量矩阵法可以有效排除温度对扭转角度的测量的影响. 关键词: 光纤传感器 侧漏型光子晶体光纤 扭转传感器 Sagnac干涉仪  相似文献   

9.
B. Sardari  R. Asadi  K. Abbasian  A. Rostami 《Optik》2012,123(4):286-290
High-birefringence fiber loop mirrors (Hi-Bi FLM) are interested in a variety of applications such as temperature and strain sensors, but their serious limitation is their structure length, in the order of several meters, for application in optical integrated devices. In this paper, we have used electromagnetically induced transparency (EIT) phenomena to reduce the length of Hi-Bi FLM to below 50 μm, where 3-level nanocrystals (QDs) are doped in Hi-Bi FLM to realize EIT conditions. EIT phenomenon amplifies refractive index differences of slow and fast axes of Hi-Bi FLM, so that the length of FLM to obtain required phase difference is reduced. This proposed sensor can measure temperature and strain simultaneously with 62.5 pm/°C and 0.3 μm, respectively.  相似文献   

10.
We propose a novel and simple scheme for a temperature-insensitive strain measurement by using a birefringent interferometer configured by a polarization-maintaining photonic crystal fiber (PM-PCF). The wavelength-dependent periodic transmission in a birefringent interferometer can be achieved by using a PM-PCF between two linear polarizers. Since the PM-PCF is composed of a single material, such as silica, the peak wavelength shift with temperature variation can be negligible because of the small amount of the birefringence change of the PM-PCF with temperature change. The measured temperature sensitivity is −0.3 pm/°C. However, the peak wavelength can be changed by strain because the peak wavelength shift is directly proportion to strain change. The strain sensitivity is measured to be 1.3 pm/με in a strain range from 0 to 1600 με. The measurement resolution of the strain is estimated to be 2.1 με. The proposed scheme has advantages of simple structure and low loss without a Sagnac loop, temperature insensitivity, ease installation, and short length of a sensing probe compared with a conventional PMF-based Sagnac loop interferometer.  相似文献   

11.
Surface-bonded fiber optic Sagnac sensors for ultrasound detection   总被引:3,自引:0,他引:3  
Jang TS  Lee SS  Kim YG 《Ultrasonics》2004,42(1-9):837-841
This paper describes a fiber optic sensor suitable for remote sensing and multi-point detection of ultrasound. This ultrasound sensor is based on the surface-bonded fiber optic Sagnac interferometer with the output fringe visibility of 1; it consists of a laser source, an ordinary single mode fiber delay line, a fiber coupler, a phase modulator and polarization controllers. For the validation of the sensor, surface acoustic waves and Lamb waves are excited by illuminating a steel specimen with an array of Q-switched Nd:YAG laser-generated line sources and the measurement of laser-generated ultrasonic waves are performed on the specimen surface using the surface-mounting fiber optic Sagnac sensor. The surface-bonded fiber optic sensor developed in this study has a simple configuration for detection of ultrasonic waves. Effectiveness of surface-bonded fiber optic Sagnac sensors for remote sensing of ultrasound and in situ monitoring of structures is investigated. The capability of multi-point detection of ultrasound by this Sagnac sensor is also discussed.  相似文献   

12.
A novel tunable multi-wavelength fiber ring laser based on semiconductor optical amplifier(SOA)is proposed by using a high-birefringence(Hi-Bi)fiber loop mirror(FLM)as wavelength filter.With this configuration,the wavelength spacing of this laser can be varied by using the different lengths of Hi-Bi fiber.8 wavelengths spacing on 450 GHz are experimentally obtained with more than 25-dB signal-to-noise ratio(SNR)for each channel using 1.28-m Hi-Bi fiber in Hi-Bi FLM.The output power variation between different channels is measured to be less than 5.9 dB.The linewidth of each channel is compressed from 0.347 to 0.186 nm by 1.5-m unpumped erbium-doped fiber(EDF).Meanwhile,17 wavelengths spacing on ITU-gird(100 GHz)are also obtained with 5.9-m Hi-Bi fiber in Hi-Bi FLM.All these channels can be tuned together over 0.4 nm.  相似文献   

13.
理论推导了高双折射光纤环镜轴向应变灵敏度公式,讨论了在高双折射光纤材料和入射光源不变的前提下,高双折射光纤长度以及作为敏感元件的传感长度与传感器轴向应变灵敏度的关系,讨论了入射光源相同时高双折射光纤材料与传感器轴向应变灵敏度的关系。结果表明:在高双折射光纤材料和入射光源不变的前提下,高双折射光纤环镜波长变化与轴向应变成线性关系,线性灵敏度为高双折射光纤材料和入射光源中心波长决定的常数,与接入的高双折射光纤长度、作为敏感元件的传感长度无关。  相似文献   

14.
In this work, a simple sensing head geometry using fibre Bragg gratings for strain and temperature discrimination is presented. The sensing head geometry consists in one fibre with two FBGs bonded with a dummy optical fibre. Due to this new configuration, different strain sensitivities of the two FBGs are obtained (≈65% difference), while temperature sensitivities remain the same. This difference in strain sensitivities is substantially larger than in all previously reported dual grating sensors. The obtained experimental errors were ±13.48 με and ±2.44 °C, respectively. It is also demonstrated that this new configuration can be used as a temperature-independent strain sensor.  相似文献   

15.
提出并研制了一种结构简单、成本低廉的温度与应变同时测量系统,其结构是在保偏光纤Sagnac环内接入一个长周期光纤光栅(LPFG)。利用LPFG对保偏光纤Sagnac环的透射光谱进行调制,通过监测谐振峰波长和强度的变化,发现波长随温度和保偏光纤的应变变化,强度随LPFG的应变变化,因此可以实现温度与应变的区分测量,并且可判断出应变的施加位置。实验得到该系统的温度灵敏度为0.181 81 nm·℃-1,LPFG区的应变灵敏度为0.005 283 dB·με-1,保偏光纤Sagnac环区的应变灵敏度为0.015 72 nm·με-1。实验结果表明该方案可行,并具有一定的实用性。  相似文献   

16.
The theory and experimental verification of an optical current sensor based on an extrinsic Sagnac interferometer configuration is presented. Superior performance with regard to current sensitivity and input/output linearity, and simple installability of the sensor makes it very suitable for remote current sensing in power distribution applications.  相似文献   

17.
A new distributed stress sensor, based on a birefringent fiber Sagnac ring configuration and frequency modulation continuous wave technology, has been investigated. The two forward-coupled mode beams in the Sagnac ring, induced by an applied stress at any given point along the fiber length, produce a beat frequency which can be analysed to determine, simultaneously, the magnitude and position of the stress. The system has a reasonable spatial resolution of 1 m in a dynamic sensing range of 50 m.  相似文献   

18.
We present a new concept for compensation of single mode fiber (SMF) birefringence effects in a Sagnac quantum key distribution (QKD) setup, based on a polarization control system and a polarization insensitive phase modulator. Our experimental data show stable (in regards to birefringence drift) QKD over 1550 nm SMF telecom networks in Sagnac configuration, using the BB84-protocol [C.H. Bennett, G. Brassard, in: Proceedings of the IEEE International Conference on Computers, Systems, and Signal Processing, Institute of Electrical and Electronic Engineers, New York, 1984, p. 175] with phase encoding. The achieved total Sagnac transmission loop distances were between 100 km and 150 km with quantum bit error rates (QBER) between 5.84% and 9.79% for the mean-photon-number μ = 0.1. The distances were much longer and rates much higher than in any other published Sagnac QKD experiments. We also show an example of our one-decoy state protocol implementations (for the 45 km distance between Alice and Bob, corresponding to the 130 km total Sagnac loop length), providing an unconditional QKD security. The measurement results have showed feasibility of QKD over telecom fiber networks in Sagnac configuration, using standard fiber telecom components.  相似文献   

19.
A Sagnac interferometer with a long-period fiber grating (LPG) inscribed in the polarization-maintaining fiber (PMF) is proposed and experimentally demonstrated for simultaneous measurement of strain and temperature. Due to the different responses of the LPG and the Sagnac interferometer to strain and temperature, simultaneous measurement can be achieved by monitoring the wavelength shifts and the intensity changes of a resonance dip of the sensor setup. The experimental results show that the achieved sensitivities to strain and temperature are 6.4 × 10− 3 dB/με and 0.65 nm/°C, respectively.  相似文献   

20.
Zhang  X. L.  Zhou  K. J.  Luo  Y. X. 《Laser Physics》2011,21(10):1825-1828
In this paper, we propose and experimentally demonstrate a novel wavelength tunable fiber ring laser source for a photonic beamforming system to control phased-array antenna. In this fabrication, a Sagnac loop composed of a polarization-maintaining (PM) coupler and a piece of high-birefringence (Hi-Bi) PM fiber is acted as a comb filter to make the frequency spacing equal. The wavelength of the output signal is controlled by the tunable filter outside the Sagnac loop. The intensities of the output signals with different wavelengths increased or decreased at the same frequency spacing are equal. A five-channel true-time delay system consisting of this tunable fiber source and five grating delay lines for discrete beamsteering has been demonstrated. In the experiment, the output signals of the tunable fiber ring with the equal frequency spacing have the same intensity of about 5.9 dBm and the same high signal to noise ratio (SNR) of 40 dB. If the tunable filter in this laser is replaced by a micro-electro-mechanical systems (MEMS) tunable filter, the speed of switching wavelength will increase rapidly.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号