首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In this paper, we present improved all-optical circuits that implement ultra-fast adders based on the carry-free property of the modified signed-digit (MSD) number representation. The all-optical realizations are based on semiconductor optical amplifier (SOA) and Mach-Zehnder interferometer (MZI) switches, which represent one of the most promising solutions due to their compact size, thermal stability and low power operation. Several all-optical circuit designs are proposed with the objective to minimize the number of the SOA-MZI switches, the time delay in the adders and some other optical elements. The proposed circuits are more efficient comparing to previously published ones in terms of the number of optical components (less by 50%) as well as the operational speed (faster by 50%).  相似文献   

2.
To cope with a larger intensity fluctuation of optical signals in optical communication networks, we have proposed and demonstrated an ultra-fast all-optical intensity equalizer based on an optical pattern recognition technique. To achieve higher transfer efficiency for this equalizer, we designed and fabricated a highly-efficient optical amplitude-phase filter using a diffractive optical element for optical pattern recognition. The fabricated amplitude-phase filter provides a diffraction efficiency of 85%, and the all-optical intensity equalizer is demonstrated to have higher transfer efficiency, when this filter is used.  相似文献   

3.
The need for increasingly high-speed digital optical systems and optical processors demands ultra-fast all-optical logic and arithmetic units. In this paper, we combine the attractive and powerful parallelism property of the modified signed-digit (MSD) number representation with the ultra-fast all-optical switching property of the semiconductor optical amplifier and Mach-Zehnder interferometer (SOA-MZI) to design and implement all-optical MSD adder/subtracter circuits. Non-minimized and minimized techniques are presented to design and realize efficient circuits to perform arithmetic operations. Several all-optical circuits’ designs are proposed with the objective to minimize the number of the SOA-MZI switches, the time delay units in the adders, and other optical elements. To use the switching property of the SOA-MZI structure, two bits per digit binary encoding for each of the trinary MSD digits are used. The proposed optical circuits will be very helpful in developing hardware modules for optical digital computing processors.  相似文献   

4.
A novel ultrahigh-speed all-optical demultiplexer (DMUX) with polarization-shift-keying (PolSK) modulation input signals is proposed. This design is based on four-wave mixing (FWM) in a semiconductor optical amplifier (SOA). For analyzing each amplifier, we use finite-difference method (FDM) based on solution of the traveling wave coupled equations. Using numerical simulation, the all-optical DMUX is theoretically realized at 40 Gb/s. We also study the relation between optical confinement factor and thickness of active layer of the SOA section successfully, and investigate the increasing effect of confinement factor on the DMUX optical output power. With this work, the confinement factor is increased from 0.3 to 0.48, and as a result, the output power approximately twice of its initial value is achieved. Moreover, the effects of polarization dependence of SOA on the output performance of all-optical DMUX for PolSK signal are theoretically investigated in detail.  相似文献   

5.
Integration of a proposed all-optical analog-to-digital (A/D) converter is described. To realize a high-speed and highthroughput system, optical A/D conversion has attracted much attention. A/D conversion generally consists of three processes of sampling, quantization and coding. Whereas an optical sampling technique has already been realized, there have been few investigations on the optical quantization and optical coding technique. We previously proposed an alloptical A/D converter which realizes both optical quantization and optical coding. In this paper, we integrate the proposed all-optical A/D converter to improve its performance and stability. We verify the operation of the integrated all-optical A/D converter composed of a short high nonlinear fiber, arrayed waveguide gratings and variable optical attenuators.  相似文献   

6.
Bijan Ghosh  Radha Raman Pal 《Optik》2011,122(20):1804-1807
Semiconductor optical amplifier (SOA) has already been established itself as a strong all-optical switching element for conducting super fast optical operations. Many all optical logic operations have been proposed by the use of SOA. Here in this paper the authors proposed a new method of implementing all-optical frequency encoded logic operations and half-adder by the use of SOA as well as Mach Zehnder interferometer. The advantage of frequency encoding has been strongly exploited here.  相似文献   

7.
Multiplexer and De-multiplexer operation play a very important role in all-optical computation, communication and control. Considerable number of multiplexing – de-multiplexing scheme in digital optical processing have already been reported. A design of all-optical ternary Multiplexer De-multiplexer circuit with optical nonlinear material (OPNLM) based switch is proposed and described in this paper. Different logic states have been represented by different polarization states of light. Logical simulation is also included here. This circuit will be useful in future all-optical multi-valued logic based computing and information processing system.  相似文献   

8.
Optics is a potential candidate in information, data, and image processing. In all-optical data and information processing, optics has been used as information carrying signal because of its inherent advantages of parallelism. Several optical methods are proposed in support of the above processing. In many algebraic,arithmetic, and image processing schemes fundamental logic and memory operations are conducted exploring all-optical devices. In this communication we report an all-optical matrix multiplication operation with non-linear material based switching circuit.  相似文献   

9.
The present paper describes various attractive logical code conversions using optical micro-ring resonator. We have proposed an all-optical switching activity using silicon waveguide based micro-ring resonator under low-power operation through two-photon absorption effect. The different properties of the optical switch are analyzed through numerical simulation. We have also proposed and described all-optical binary-to-octal, binary-coded-decimal-to-excess-3 and binary-to-Gray-code converter circuits by this proposed architecture. Numerical simulation results for code conversion verifying the proposed methods are given in this paper. We identify a combination of feasible ring radius and detuning through numerical simulation that allows analyzing the system performance of the scheme.  相似文献   

10.
张建国  刘元山 《光子学报》2014,40(4):487-504
全光取样示波器是研究与开发超高速光通信系统和光子交换网络的关键性测试仪器设备. 本文简介了我们自行设计和研制出的超宽带全光取样示波器设备的实验样机系统, 并报道了我们已取得的初步实验结果. 采用自主研发的高稳定性被动锁模飞秒光纤激光器作为该光学示波器的光脉冲取样源, 我们通过利用高度非线性光纤中的四波混频效应, 成功地实现了对脉宽为1.8ps、重复频率分别为10GHz和40GHz的光脉冲信号的全光取样. 然后通过数字信号处理和计算机图形处理, 得到了再现后的超短光脉冲信号波形, 并测出了其脉冲宽度值为2.3ps. 借助于该光学取样示波器实验样机, 我们还成功地完成了对脉宽为1.8ps、经过伪随机数据序列调制后的10Gbit/s和40Gbit/s光数据信号眼图的精确测量. 这是我国首次报道有关超宽带全光取样示波器设备的实际研制工作及其相应的实验测试结果. 所得到的有关超短光脉冲信号波形的测试结果也与用70GHz宽带电子示波器和超快光电探测器组成的常规光电测量系统所获得的结果进行了比较, 清楚地表明了我们研制出的全光取样示波器实验样机比后者具有更高的时间分辨率和更大的测量带宽.  相似文献   

11.
With the small mass, large quality-factor and high frequency, mechanical resonators (MRs) will ultimately find usage in a broad range of applications, such as electrometry, optomechanical/electromechanical signal processing, and mass detection. In this review, we focus on a particular MR application: mass sensing in an all-optical domain. Compared to the mass detection based on the electrical techniques, we have proposed an optical protocol to weigh the external particles deposited onto the surface of a mechanical resonator. This protocol, which is so far the first method to deal with the mass sensing in an all-optical domain, is based on some coupled mechanical resonator systems. Here we review our recent optical mass sensors comprehensively. These all-optical mass sensors have the potential to break through the limitation of frequency restriction and to enhance the sensitivity of mass detection.  相似文献   

12.
The application of multi-valued (non-binary) signals can provide a considerable relief in transmission, storage and processing of large amount of information in digital signal processing. Optical multi-valued logical operation is an interesting challenge for future optical signal processing where we can expect much innovation. A novel all-optical quaternary successor (QSUC) circuit with the help of semiconductor optical amplifier (SOA)-assisted Sagnac switch is proposed and described. This circuit exploits the polarization properties of light. Different logical states are represented by different polarization state of light. Simulation result confirming described method is given in this paper. Proposed all-optical successor circuit can take an important and significant role in designing of all-optical quaternary universal inverter and modulo arithmetic unit (addition and multiplication).  相似文献   

13.
Jitendra Nath Roy 《Optik》2009,120(7):318-324
Interferometric devices for optical processing have been of great interest in recent years. Semiconductor optical amplifier (SOA)-based Mach-Zehnder interferometer (MZI) has already taken a significant role in the field of ultra-fast all-optical signal processing. Optical tree architecture (OTA) provides important contributions in optical interconnecting networks. In this communication, we have tried to exploit the advantages of both OTA and SOA-based MZI switches. We have proposed SOA-MZI-based tree architecture, a new and alternative scheme, for integrated all-optical logic and arithmetic operations. This architecture can enable one to perform all-optical processing of signals, including two input logic operations, half-adder, full-adder, full-subtractor, one-bit data comparator, etc.  相似文献   

14.
All-optical logic gates including AND, XOR, and NOT gates, as well as a half-adder, are realized based on twodimensional lithium niobate photonic crystal(PhC) circuits with Ph C micro-cavities. The proposed all-optical devices have an extinction ratio as high as 23 dB due to the effective all-optical switch function induced by twomissing-hole micro-cavities. These proposed devices can have potential implementation of complex integrated optical functionalities including all-optical computing in a lithium niobate slab or thin film.  相似文献   

15.
A novel scheme for all-optical serial-to-parallel conversion (SPC) is proposed for label recognition of ultrafast asynchronous burst optical packets. Compact SP converter modules were developed using a fiber array or a surfaceemitting planar lightwave circuit, and 1-Tbit/s and 40-Gbit/s SPC for 16-bit optical packets is demonstrated using the modules. The key device in the converter is a spin-polarized surface-reflection all-optical switch (LOTOS) with an ultrafast switching time (250 fs) and an extremely high on/off ratio (>30 dB). Label recognition of 40-Gbit/s 16-bit burst-mode optical packets is experimentally confirmed using an optical clock-pulse generator and a complementary metal-oxide-semiconductor (CMOS) electronics circuit as well as the all-optical SP converter. 1 x 4 self-routing is also demonstrated using 2-channel control signals generated from the CMOS circuit according to a routing table.  相似文献   

16.
Over the last few decades, several all-optical circuits have been proposed to meet the need of high-speed data processing. In some information processing architectures, the role of various analog and digital data comparisons is very important. In this letter, we proposed a multi-bit data comparison scheme. The scheme is based on the switching property of optical nonlinear material. Ultrafast operational speed larger than gigahertz can be expected from this all-optical scheme.OCIS codes: 190.0190, 200.0200, 200.1130, 200.3760.  相似文献   

17.
Some recent results on all-optical packet-switching and broadcasting networks are presented. The performance evaluation problem of packet-switching transparent optical networks with deflection routing is addressed. Transmission error arguments show how, for a given optical bit rate, the size of an all-optical nonregenerative multishop network is limited by the accumulation of noise and distortion in the optical fiber channel. Time-domain multiple access techniques are exploited in novel architectures based on recently proposed all-optical sampling gates to realize the matching of the ultrahigh optical speed allowed by the large bandwidth of the fiber with the lower speed of the electronic components needed at the user ends. These architectures allow great simplification of the node structure in the considered all-optical multihop and broadcast networks.  相似文献   

18.
An all-optical adder/subtractor (A/S) unit with the (TOAD) is proposed. The all-optical A/S unit with help of terahertz optical asymmetric demultiplexer a set of all-optical full-adders and optical exclusive- ORs (XORs), can be used to perform a fast central processor unit using optical hardware components. We try to exploit the advantages of TOAD-based optical switch to design an integrated all-optical circuit which can perform binary addition and subtraction. With computer simulation results confirming the described methods, conclusions are given.  相似文献   

19.
A novel all-optical quantization and coding scheme for ultrafast analog-to-digital (A/D) conversion exploiting polarization switches (PSWs) based on nonlinear polarization rotation (NPR) in semiconductor optical amplifiers (SOAs) is proposed. In addition, a theoretical model for the polarization switch based on NPR is presented. Through cascading two PSWs, a 2-period transfer function for 3-bit long all-optical quantization and coding is realized numerically for the first time to the authors’ knowledge. The effective number of bits (ENOB), the limitation of bandwidth and conversion speed and the scalability are also investigated. The proposed all-optical quantization and coding scheme, combined with existing all-optical sampling techniques, will enable ultrafast A/D conversion at operating speed of hundreds of Gs/s with at least 3 bit resolution, and allows low optical power requirements, photonic integration, and easy scalability.  相似文献   

20.
All-optical shift registers are basic building modules for the development of ultra-high speed optical time division multiplexing networks. In this paper, we review the progress that has been made in this cutting-edge technology, focusing on implementations that exploit the attractive features of semiconductor optical amplifier (SOA)-based interferometric configurations. We present regenerative storage performed with an all-optical recirculating shift register with an inverter at 10 Gb/s using a SOA-assisted Sagnac switch and a second SOA to provide feedback. We demonstrate also an all-optical memory based on the SOA-assisted Ultrafast Nonlinear Interferometer capable of reading/writing 20 Gb/s packets of variable length without data inversion. These registers can find application in the development of two nontrivial complex all-optical circuits of enhanced functionality. The first is an all-optical pseudorandom binary sequence generator for which we describe an efficient design algorithm and propose ways for monitoring and verification. The second is an all-optical error counter for which we address the error detection and evaluation issues using a novel sampling technique. These circuits are key elements for the implementation of a high-speed, all-optical bit error rate tester (BERT), which has the potential to outperform its electronic equivalent and constitute a possible new product for the telecommunications industry.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号