首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 23 毫秒
1.
Spectroscopic investigations of individual single-crystalline GaN nanowires with a lateral dimensions of ~30–90 nm were performed using the spatially resolved technique of electron energy-loss spectroscopy in conjunction with scanning transmission electron microscope showing a 2-Å electron probe. Positioning the electron probe upon transmission impact and at aloof setup with respect to the nanomaterials, we explored two types of surface modes intrinsic to GaN, surface exciton polaritons at ~8.3 eV (~150 nm) and surface guided modes at 3.88 eV (~320 nm), which are in visible/ultra-violet spectral regime above GaN bandgap of ~3.3 eV (~375 nm) and difficult to access by conventional optical spectroscopies. The explorations of these electromagnetic resonances might expand the current technical interests in GaN nanomaterials from the visible/UV range below ~3.5 eV to the spectral regime further beyond.  相似文献   

2.
The recent development of atomic resolution, low dose-rate electron microscopy allows investigating 2D materials as well as catalytic nano particles without compromising their structural integrity. For graphene and a variety of nanoparticle compositions, it is shown that a critical dose rate exists of <100 e2 s at 80 keV of electron acceleration that allows maintaining the genuine object structures including their surfaces and edges even if particles are only 3 nm large or smaller. Moreover, it is demonstrated that electron beam-induced phonon excitation from outside the field of view contributes to a contrast degradation in recorded images. These degradation effects can be eliminated by delivering electrons onto the imaged area, only, by using a Nilsonian illumination scheme in combination with a suitable aperture at the electron gun/monochromator assembly.  相似文献   

3.
Dye sensitized solar cells (DSSCs) were fabricated based on coumarin NKX-2700 dye sensitized bi-layer photoanode and quasi-solid state electrolyte sandwiched together with cobalt sulfide coated counter electrode. A novel bi-layer photoanode has been prepared using composite mixtures of 90 wt.% TiO2 nanoparticles + 10 wt.% TiO2 nanowires (TNPWs) as active layer and Nb2O5 is coated on the active layer, which acts as scattering layer. Hafnium oxide (HfO2) was applied over the TNPWs/Nb2O5 photoanode film, as a blocking layer. TiO2 nanoparticles (TNPs), TiO2 nanowires (TNWs) and TNPWs/Nb2O5 were characterized by X-ray diffractometer (XRD), scanning electron microscope (SEM) and transmission electron microscope (TEM). The sensitizing organic dye coumarin NKX-2700 displayed maximum absorption wavelength (λmax) at 525 nm, which could be observed from the UV–vis spectrum. DSSC-1 fabricated with composite bi-layer photoanode revealed enhanced photo-current efficiency (PCE) as compared to other DSSCs and illustrated photovoltaic parameters; short-circuit current JSC = 18 mA/cm2, open circuit voltage (VOC) = 700 mV, fill factor (FF) = 64% and PCE (η) = 8.06%. The electron transport and charge recombination behaviors of DSSCs were investigated by electrochemical impedance spectra (EIS) and the results illustrated that the DSSC-1 showed the lowest charge transport resistance (Rtr) and the longest electron lifetime (τeff). Therefore, in the present investigation, it could be concluded that the novel bi-layer photoanode with blocking layer increased the short circuit current, electron transport and suppressed the recombination of charge carriers at the photoanode/dye/electrolyte interface in DSSC-1.  相似文献   

4.
The three-dimensional real-space observation of photonic nanojet in different microspheres illuminated by a laser is reported. The finite-difference time-domain technique is used to perform the three-dimensional numerical simulation for the dielectric microspheres. The key parameters of photonic nanojet are measured by using a scanning optical microscope system. We reconstruct the three-dimensional real-space photonic nanojets from the collected stack of scanning images for polystyrene microspheres of 3 μm, 5 μm, and 8 μm diameters deposited on a glass substrate. Experimental results are compared to calculations and are found in good agreement with simulation results. The full width at half-maximum of the nanojet is 331 nm for a 3 μm microsphere at an incident wavelength of 633 nm. Our investigations show that photonic nanojets can be efficiently imaged by a microsphere and straightforwardly extended to rapidly distinguish the nano-objects in the far-field optical system.  相似文献   

5.
We investigate the feasibility of cutting and drilling thin flex glass (TFG) substrates using a picosecond laser operating at wavelengths of 1030 nm, 515 nm and 343 nm. 50 μm and 100 μm thick AF32®Eco Thin Glass (Schott AG) sheets are used. The laser processing parameters such as the wavelength, pulse energy, pulse repetition frequency, scan speed and the number of laser passes which are necessary to perform through a cut or to drill a borehole in the TFG substrate are studied in detail. Our results show that the highest effective cutting speeds (220 mm/s for a 50 μm thick TFG substrate and 74 mm/s for a 100 μm thick TFG substrate) are obtained with the 1030 nm wavelength, whereas the 343 nm wavelength provides the best quality cuts. The 515 nm wavelength, meanwhile, can be used to provide relatively good laser cut quality with heat affected zones (HAZ) of <25 μm for 50 μm TFG and <40 μm for 100 μm TFG with cutting speeds of 100 mm/s and 28.5 mm/s, respectively. The 343 nm and 515 nm wavelengths can also be used for drilling micro-holes (with inlet diameters of ⩽75 µm) in the 100 μm TFG substrate with speeds of up to 2 holes per second (using 343 nm) and 8 holes per second (using 515 nm). Optical microscope and SEM images of the cuts and micro-holes are presented.  相似文献   

6.
Dye-sensitized solar cells (DSSCs) use two glass substrates (photo electrode and counter electrode) coated with fluorine-doped tin oxide (FTO) to harvest light into the cell and to collect electrons. The space between the photo electrode and the counter electrode are filled with a liquid type electrolyte for electron transfer into the cell. Therefore, an appropriate sealing method is required to prevent the liquid electrolyte leaking out. In this paper, a simple CO2 laser beam with TEM00 mode excited by a 60 Hz AC discharge was used to seal two glass substrates coated with FTO for the fabrication of DSSCs. The sealing technique improved the durability and stability of the DSSCs. The optimal conditions for the sealing of the DSSCs are related to the pin-hole diameter, the discharge current and the moving velocity of the target. Especially, the CO2 laser beam is used as a heat source that is precisely controlled by the pin-hole, which plays an important role in adjusting its spot size. From these results, the maximum laser power was found to be 40 W at 18 Torr and 35 mA. In order to achieve the best sealing quality, the following parameters are required: a pin-hole diameter of 4 mm, input voltage of 10.73 kV, discharge current of 9.31 mA, moving velocity of 1 mm/s and distance from the target surface of 26.5 cm. Scanning electron microscope images show that the sealing quality obtained using the CO2 laser beam is superior to that obtained using a hot press or soldering iron.  相似文献   

7.
Inhibition of Candida albicans growth was shown by lemon grass oil (LGO) and lemon grass oil vapour (LGO vapour) at 288 μg/ml and 32.7 μg/ml concentration, respectively. The assessment of cell damage by LGO and LGO vapour was done through scanning electron microscope (SEM), transmission electron microscope (TEM) and atomic force microscope (AFM) observations. SEM analysis showed complete rupture of C. albicans cells treated with LGO vapour while in those treated with LGO in broth, only shrinkage was observed. TEM study showed the alterations in morphology upon treatment with LGO while complete degradation of the Candida cells was observed in case of LGO vapour. Further three dimensional morphological changes and roughness of the cells have also been evaluated with AFM after the treatment with LGO & LGO vapour. Roughness (root mean square value) was significantly higher in control C. albicans cells (211.97 nm) than LGO (143 nm) and LGO vapour (5.981 nm) treated cells. The results for the first time demonstrate relatively higher efficacy of LGO vapours for inhibition and cellular damage of C. albicans cells as compared to the LGO in liquid phase. This suggests the potential application of LGO vapour phase against infections caused by C. albicans.  相似文献   

8.
《Surface science》2003,470(1-2):193-200
We have conducted photoemission electron microscope (PEEM) and Auger electron spectroscopy (AES) studies on the Cu(30 nm)/3C–SiC(1 0 0) and Cu(30 nm)/Si(1 0 0) samples annealed successively up to 850 °C. With PEEM, lateral diffusion of Cu atoms on the 3C–SiC substrate was observed at 400 °C while no lateral diffusion was seen for the Cu/Si(1 0 0) samples up to 850 °C. The 30 nm Cu thin film on 3C–SiC began to agglomerate at 550 °C, similar to the case for the Cu/Si(1 0 0) system. No further spread of the lateral diffusion region was found in subsequent annealing up to 850 °C for Cu/3C–SiC while separated regular-sized dot structures were found at 850 °C for Cu/Si(1 0 0). AES studies of Cu/Si(1 0 0) system showed partial interface reaction during Cu deposition onto the Si(1 0 0) substrate and oxidation of the resultant Cu3Si to form SiO2 on the specimen surface at room temperature in air. Surface segregation of Si and C was observed after annealing at 300 °C for Cu/Si(1 0 0) and at 850 °C for the Cu/3C–SiC system. We have successfully elucidated the observed phenomena by combining PEEM and AES considering diffusion of the constituent elements and/or reaction at interfaces.  相似文献   

9.
Manganese doping in nickel films capped with copper have been prepared by evaporation in vacuum. The films are composed of grains with an average diameter of ~ 20 nm from scanning electron microscope scans. Optical absorption is measured over a wavelength range of 190–450 nm. Two plasmon peaks are observed at 3.30 eV and 4.45 eV for a range of concentrations of films. The 4.45 eV peak is a bulk plasmon peak that is enhanced by increasing the manganese in nickel. The 3.30 eV peak is a surface plasmon peak that increases in width or strength of plasmon resonance with increasing concentration of manganese. This may be a combination effect of charge carrier concentration and dielectric screening from the reformed electronic band structure caused by manganese doping. By adding manganese into nickel, the ferromagnetic order is further destroyed as a transition into a spin glass occurs. This spin glass behavior is seen in a coercivity measurement at 4 K where the coercivity drops precipitously as the doping concentration increases.  相似文献   

10.
Image quality of MeV transmission electrons is an important factor for both observation and electron tomography of microns-thick specimens with the high voltage electron microscope (HVEM) and the ultra-HVEM. In this work, we have investigated image quality of a tilted thick specimen by experiment and analysis. In a 3 MV ultra-HVEM, we obtained transmission electron images in amplitude contrast of 100 nm gold particles on the top surface of a tilted 5 μm thick amorphous epoxy-resin film. From line profiles of the images, we then measured and evaluated image blurring, contrast, and the signal-to-noise ratio (SNR) under different effective thicknesses of the tilted specimen and accelerating voltages of electrons. The variation of imaging blurring was consistent with the analysis based on multiple elastic scattering. When the effective thickness almost tripled, image blurring increased from ~3 to ~20 nm at the accelerating voltage of 3 MV. For the increase of accelerating voltage from 1 to 3 MV in the condition of the 14.6 μm effective thickness, due to the reduction of multiple scattering effects, image blurring decreased from ~54 to ~20 nm, and image contrast and SNR were both obviously enhanced by a factor of ~3 to preferable values. The specimen thickness was shown to influence image quality more than the accelerating voltage. Moreover, improvement on image quality of thick specimens due to increasing the accelerating voltage would become less when it was further increased from 2 to 3 MV in this work.  相似文献   

11.
Multi-pulse laser ablation of silver in deionized water was studied. The laser beams were arranged in a cross-beam configuration. In our experiments, two single-mode, Q-switched Nd-Yag lasers operating at 1064 nm, pulse duration of 5.5 ns and 10 Hz rep rate were used. The laser fluence of the second beam was 0.265 J/cm2 for all tests. Two levels of the laser fluences were used for the ablating beam: 0.09 and 0.265 J/cm2 (11,014 and 33,042 J/cm2 at the focal point, respectively). The silver target was at 50 mm from the cell window and 10 mm deep. The second beam was aligned parallelly with the silver target and focused at 2 mm in front of the focal point of the ablating beam. For all cases, the delay time between the ablating beam and the cross-beam was 40 μs. In general, the ablated particles were almost all spherical. For fluence of 0.09 J/cm 2 and single-beam approach, the mean particle size was about 29 nm. The majority of the particles, however, were in 19–35 nm range and there were some big ones as large as 50–60 nm in size. For double-beam approach, the particles were smaller with the average size of about 18 nm and the majority of the particles were in 9–21 nm range with few big one as large as 40 nm. For the beam fluence of 0.265 J/cm2 and single-beam configuration, the particle sizes were smaller, the mean particles size was about 18 nm and the majority of the particles were in the range of 10–22 nm with some big one as large as 40 nm. For double-beam approach, the mean particle size was larger (24.2 nm) and the majority of the particle were distributed from 14 to 35 nm with some big particles can be found with sizes as big as 70 nm. Preliminary measurements of the thermal conductivity and viscosity of the produced samples showed that the thermal conductivity increased about 3–5% and the viscosity increased 3.7% above the base fluid viscosity even with the particle volume concentration as low as 0.01%.  相似文献   

12.
Cold-field emission properties of carbon cone nanotips (CCnTs) have been studied in situ in the transmission electron microscope (TEM). The current as a function of voltage, i(V), was measured and analyzed using the Fowler–Nordheim (F–N) equation. Off-axis electron holography was employed to map the electric field around the tip at the nanometer scale, and combined with finite element modeling, a quantitative value of the electric field has been obtained. For a tip-anode separation distance of 680 nm (measured with TEM) and a field emission onset voltage of 80 V, the local electric field was 2.55 V/nm. With this knowledge together with recorded i(V) curves, a work function of 4.8 ± 0.3 eV for the CCnT was extracted using the F–N equation.  相似文献   

13.
Single-mode small-core (~2 μm × 2 μm) Y-branch waveguide structures in photosensitive polymer have been fabricated. Y-branch waveguides are designed by the beam propagation method and Y-branch waveguides are obtained on development after a cross-linkable negative tone epoxy SU-8 2002 polymer is exposed to UV through a photomask. Optical Adhesive NOA 61 is used as under- and over-clad. The fabrication process is optimized to avoid polymer residue at the Y-junction. The average insertion loss obtained for a 7.2 mm 1 × 2 device at chip-level is ~13 dB at 1550 nm.  相似文献   

14.
Castor oil and ricinoleic acid (an isolate of castor oil) are environmentally friendly bio-based organic surfactants that have been used as capping agents to prepare nearly spherical cadmium sulfide quantum dots (QDs) at 230, 250 and 280 °C. The prepared quantum dots were characterized by Ultra violet–visible (UV–vis), Photoluminescence (PL), Transmission Electron Microscopy (TEM), High Resolution Transmission Electron Microscopy (HRTEM) and X-ray diffraction (XRD) giving an overall CdS QDs average size of 5.14±0.39 nm. The broad XRD pattern and crystal lattice fringes in the HRTEM images showed a hexagonal phase composition of the CdS QDs. The calculated/estimated average size of the prepared castor oil capped CdS QDs for various techniques were 4.64 nm (TEM), 4.65 nm (EMA), 5.35 nm (UV–vis) and 6.46 nm (XRD). For ricinoleic acid capped CdS QDs, the average sizes were 5.56 nm (TEM), 4.78 nm (EMA), 5.52 nm (UV–vis) and 8.21 nm (XRD). Optical properties of CdS QDs showed a change of band gap energy from its bulk band gap of 2.42–2.82 eV due to quantum size confinement effect for temperature range of 230–280 °C. Similarly, a blue shift was observed in the photoluminescence spectra. Scanning electron microscope (SEM) observations show that the as-synthesized CdS QDs structures are spherical in shape. Fourier transform infra-red (FTIR) studies confirms the formation of castor oil and ricinoleic acid capped CdS QDs.  相似文献   

15.
Blue light emitting chromophores have been separated from silica spheres by soaking them into acetone for 120 days. The luminescent chromophores were not obtained from other solvents, including ether, methanol, ethanol, 2-propanol, chloroform and tetrahydrofuran. According to the Fourier transform infrared spectrum, the luminescent material is composed of C–OH, –CH2, –CH3, C=O, and Si–O–Si. UV–visible absorption peak of the chromophore is at 5.17 eV (240 nm). Field emission scanning electron microscope images show small cracks on the surface of aged spheres. The luminescence peak was at 2.81 eV (441 nm) for excitation energy between 3.88 and 3.35 eV and slightly shifted toward lower energy for excitation energy lower than 3.35 eV. The deconvoluted luminescent spectrum shows two emission bands at 3.08 and 2.74 eV, which are well-matched the oxygen deficient center model. Compared to the absorption peak (5.17 eV) and the emission peak (2.81 eV), large Stokes shift (2.36 eV) is observed.  相似文献   

16.
The penetration depth of electron in amorphous aluminum nitride (AlN) is determined in terms of energy loss per unit length using electron beam in a cathodoluminescence (CL) apparatus. Thin films bilayers of holmium doped aluminum nitride (AlN:Ho) and thulium doped aluminum nitride (AlN:Tm) are deposited on silicon substrates by rf magnetron sputtering method at liquid nitrogen temperatures. The bilayers structure consisted of a 37.8 nm thick AlN:Tm film on the top of a 15.3 nm thick AlN:Ho film. Electron beam of different energies are allowed to penetrate the AlN:Tm/AlN:Ho bilayers film. The spectroscopic properties of AlN:Ho and AlN:Tm, the thickness of the film and the energies of electron beam are used to calculate the penetration depth of electron in amorphous AlN. Electron beam of 2.5 keV energy was able to pass through the 37.8 nm thick AlN:Tm film. The electron penetration depth for AlN is found to be 661.4 MeV/cm.  相似文献   

17.
A microring resonant wavelength demulti/multiplexer (MRRWDM) based on UV-written technology is designed. By using a double smooth octagon microrings structure, a 1 × 8 device around the central wavelength of 1550.918 nm with the wavelength spacing of 1.4 nm is presented. Analytical results based on coupled mode theory show that the 3 dB bandwidth is about 0.22 nm, the insertion loss is less than 0.7 dB, and the crosstalk is below ?47 dB for every output channel of the designed device without tolerances.  相似文献   

18.
In this paper, a study of in-house built optical coherence tomography (OCT) system with a wavelength of 840 nm for imaging of dental caries, progress in demineralisation and cavity restoration is presented. The caries when imaged with the 840 nm OCT system showed minute demineralisation in the order of 5 μm. The OCT system was also proposed to study the growth of lesion and this was demonstrated by artificially inducing caries with a demineralisation solution of pH 4.8. The progress of carious lesion to a depth of about 50–60 μm after 60 hours of demineralisation was clearly observed with the 840 nm OCT system. The tooth samples were subjected to accelerated demineralisation condition at pH of approximately 2.3 to study the adverse effects and the onset of cavity formation was clearly observed. The restoration of cavity was also studied by employing different restorative materials (filled and unfilled). In the case of restoration without filler material (unfilled), the restoration boundaries were clearly observed. Overall, results were comparable with that of the widely used 1310 nm OCT system. In the case of restoration with filler material, the 1310 nm OCT imaging displayed better imaging capacity due to lower scattering than 840 nm imaging.  相似文献   

19.
In material processing, a laser system with optimal laser parameters has been considered to be significant. Especially, the laser ablation technology is thought to be very important for fabricating a dye-sensitized solar cell (DSSC) module with good quality. Moreover, the TEM00 mode laser beam is the most dominant factor to decide the incident photon to current conversion efficiency (IPCE) characteristics. In order to get the TEM00 mode, a pin-hole is inserted within a simple pulsed Nd:YAG laser resonator. And the spatial field distribution is measured by using three pin-hole diameters of 1.6, 2.0 and 4.0 mm, respectively. At that moment, each case has the same laser beam energy by adjusting the discharge voltage and pulse per second (pps). From those results, it is known that the pin-hole size of 1.6 mm has the perfect TEM00 mode. In addition, at the charging voltage of 1000 V, 10 pps, the feeding speed of 6.08 mm/s and the overlapping rate (OL) of 62%, the scanning electron microscope (SEM) photograph of fluorine-doped tin oxide (FTO) thin film layers shows the best ablation trace.  相似文献   

20.
The change in characteristic magnetic fields of a spin-valve multilayer is investigated as a function of the size by computer simulation. The spin-valve modeled in this work is IrMn (9 nm)/CoFe (4 nm)/Cu (2.6 nm)/CoFe (2 nm)/NiFe (6 nm). The spin-valve dimensions are varied widely from 20 mm×10 mm to 0.5 μm×0.25 μm, but the aspect ratio defined by the ratio of the length to the width is fixed at 2.0. The magnetostatic interactions begin to affect the magnetic properties substantially at a spin-valve length of 5 μm, and, at a length of 1 μm, they become even more dominant. The main consequences of the magnetostatic interactions are a significant increase of the coercivity and a very large shift of the bias field in both the pinned and free layers. It is shown that these changes can be explained by two separate contributions to the total magnetostatic interactions: the coercivity change by the self-demagnetizing field and the change of the bias field by the interlayer magnetostatic interaction field.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号