首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
《Microchemical Journal》2008,88(2):132-138
In the present work, a simple and sensitive preconcentration-microwave plasma torch-atomic emission spectrometric procedure was carried out for the determination of cobalt and nickel. The method was based upon a flow-injection system with on-line preconcentration of the metal ions on a minicolumn of a strong acid cation-exchange resin. The operation parameters including sample acidity, flow rate, loading time, and eluent concentration, flow rate were studied and optimized. Under the optimal experimental conditions the enrichment factors were calculated as 13.58 and 17.65 for cobalt and nickel, respectively. The relative standard deviations, 3.73% for cobalt and 4.23% for nickel (n = 7), and a sample throughput of 40 h 1 were obtained. Furthermore, the limits of detection were shown to be 1.28 and 1.80 μg·L 1 for cobalt and nickel, respectively. The method was applied to the determination of cobalt and nickel in tea samples and the accuracy was assessed through recovery experiments.  相似文献   

2.
An automated solid phase extraction method by flow analysis on-line inductively coupled plasma mass spectrometry (FI-ICP-MS) for the determination of cobalt, chromium, nickel, cadmium, manganese, zinc, copper and lead in sea-water and other natural waters is described. The system is based on retention of the analytes onto a minicolumn packed with a chelating resin, 1,5-bis (2-pyridyl)-3-sulphophenyl methylene thiocarbonohydrazide immobilized on aminopropyl-controlled pore glass, placed in the injection valve of a simple flow manifold. The effects of chemical and flow variables were investigated and selected as a compromise between sensitivity and sampling frequency. So, the sample solutions (adjusted to pH 8.0 ± 0.5) were passed through the column. After washing the column with water, the adsorbed metals were subsequently eluted into the plasma with 4% m/m nitric acid. Detection limits of the trace metals (180 s sample loading time at a sample flow rate of 0.7 mL min? 1; sampling frequency 8.6 h? 1) were 0.002 μg L? 1 for Co, 0.057 μg L? 1 for Cr, 0.117 μg L? 1 for Ni, 0.004 μg L? 1 for Cd, 0.210 μg L? 1 for Mn, 0.260 μg L? 1 for Zn, 0.030 μg L? 1 for Cu and 0.020 μg L? 1 for Pb, with enrichment factors between 2.2 and 6.8. The accuracy of the proposed method was checked with certified reference materials (CRMs) of sea-water SLEW 3, LGC6016 and CASS-5, river water SLRS-5 and fortified lake water TMDA-54.4. The results from the determination of these metals were in agreement with the certified values and recovery values ranged between 92.2 and 110.6%. The method was applied to the determination of these metal ions in sea-water samples collected in the Málaga Bay in order to realize a pilot study necessary to generate preliminary information on which to base a more detailed pollution study by heavy metals of the Bay.  相似文献   

3.
Nano-sized insoluble iron, cobalt and nickel hexacyanoferrates (Mhcf) were prepared by a simple co-precipitation method. The potential of using these materials for supercapacitor was examined by cyclic voltammogram and constant charge/discharge. Due to the different types of the second metal (M), the Mhcf electrodes showed different electrochemical capacitive performances. The specific discharge capacitances of Fehcf, Nihcf and Cohcf electrodes at the current density of 0.2 A g−1 were 425 F g−1, 574.7 F g−1 and 261.56 F g−1, respectively. Meanwhile, the Mhcf electrodes showed good cyclic performance.  相似文献   

4.
A highly sensitive, selective and rapid method for the determination of cobalt based on the rapid reaction of cobalt(II) with 5-(2-benzothiazolylazo)-8-hydroxyquinolene BTAHQ and the solid phase extraction of the Co(II)-BTAHQ complex with C18 membrane disks were developed. In the presence of pH = 6.4 buffer solution and cetylpyridenium chloride (CPC) medium, BTAHQ reacts with cobalt to form a deep violet complex with a molar ratio of 1:1 (cobalt to BTAHQ). This complex was enriched by the solid phase extraction with C18 membrane disks. An enrichment factor of 100 was obtained by elution of the complex from the disks with a minimal amount of isopentyl alcohol. In isopentyl alcohol medium, the molar absorptivity of the complex is 2.42 × 105 L mol−1 cm−1 at 658 nm. Beer’s law is obeyed in the range of 0.01–0.38 μg mL−1 in the measured solution. The relative standard deviation for 11 replicate samples of 0.20 μg mL−1 level is 1.37%. The detection and quantification limits reach 3.1 and 9.7 ng mL−1 in the original samples. This method was applied for the determination of cobalt in biological, water, soil and pharmaceutical preparation samples with good results.  相似文献   

5.
The paper presents the preconcentration of trace elements via electrodeposition onto a (micro)aluminum cathode in the presence of ionic liquid 1-butyl-3-methylimidazolium hexafluorophosphate [BMIM][PF6] as a supporting electrolyte. The advantages of the proposed method include very simple instrumentation for the preconcentration of trace elements and low-cost reagents. The experiment showed that the use of ionic liquid in the electrodeposition process significantly improves sensitivity, recovery and detection limits for the determination of trace amounts of iron, cobalt, nickel and zinc. The preconcentrated metals were determined using X-ray fluorescence spectrometry. The optimum parameters for electrodeposition such as pH, the volume of the analyzed solution, the voltage and the deposition time were studied. Under the optimized conditions, the detection limits were 5, 2, 3 and 6 μg L 1 for iron, cobalt, nickel and zinc, respectively. The precision and recovery of the method were in the range of 3–5.5%, and 92–103%, respectively. The calibration was performed using aqueous standards of Fe(III), Co(II), Ni(II) and Zn(II) in the range 0.01–0.25 mg L 1. The method was applied successfully in water analysis.  相似文献   

6.
In the present study an easy micellar precipitation process at ambient temperature using cationic surfactant cetyl-trimethyl ammonium bromide (CTAB) was applied to the simultaneous extraction of cadmium, cobalt and nickel from aqueous samples. The analytical procedure involved the complex formation of these cations with 1,8-dihydroxyanthrone as a chelating agent in buffer media of pH 7.0. After the phase separation, the precipitated complexes were first dissolved in 0.25 mL of 80:20 propanol–water mixture containing 0.03 mL HNO3 and then subjected to the inductively coupled plasma-optical emission spectrometry (ICP-OES) analysis. The concentration of 1,8-dihydroxyanthrone, pH, amount of CTAB and centrifuge time was optimized. Under the optimum conditions, the preconcentration factor was 40 and the improvement factors of 11.6, 9.5 and 14.4 with detection limits of 0.008, 0.009 and 0.004 (ng mL? 1) were obtained for Cd, Co and Ni respectively. Under the presence of foreign ions no significant interference was observed. Finally, the proposed extraction method was successfully applied to the determination of these elements in various water and geological CRM samples with recovery percentages of 97–104% and RSD values of 1.87–2.36%.  相似文献   

7.
Nano-sized nickel ferrite (NiFe2O4) was prepared by hydrothermal method at low temperature. The crystalline phase, morphology and specific surface area (BET) of the resultant samples were characterized by X-ray diffraction (XRD), transmission electron microscopy (TEM), high-resolution transmission electron microscopy (HRTEM) and nitrogen physical adsorption, respectively. The particle sizes of the resulting NiFe2O4 samples were in the range of 5–15 nm. The electrochemical performance of NiFe2O4 nanoparticles as the anodic material in lithium ion batteries was tested. It was found that the first discharge capacity of the anode made from NiFe2O4 nanoparticles could reach a very high value of 1314 mAh g−1, while the discharge capacity decreased to 790.8 mAh g−1 and 709.0 mAh g−1 at a current density of 0.2 mA cm−2 after 2 and 3 cycles, respectively. The BET surface area is up to 111.4 m2 g−1. The reaction mechanism between lithium and nickel ferrite was also discussed based on the results of cycle voltammetry (CV) experiments.  相似文献   

8.
The determination of chromium (VI) compounds in plants by electrothermal atomic absorption spectrometry (ET AAS) is proposed based on their leaching with 0.1 M Na2CO3. Due to the presence of relatively high amounts of Na2CO3 in the resulting samples, the temperature and time of pyrolysis and atomization stages must be optimized to minimize the influence of the matrix. A limit of detection (LOD) for determination of Cr(VI) in plants by ET AAS was found to be 0.024 μg g−1.The concentration of Cr(VI) and total chromium in plants collected in different geographical areas (South Africa and Russia), grown on soils high in chromium was determined. The concentration of Cr(VI) and total Cr in stems and leaves of plants was in the range of 0.04–0.7 μg g−1 and 0.5–10 μg g−1, respectively. The limited uptake of Cr(III) by plants, in comparison to its concentration in soil, can be explained by the very low solubility of natural Cr(III) compounds.Results for the determination of Cr(VI) were confirmed by the analysis of BCR CRM 545 (Cr(VI) in welding dust) with good agreement between certified (39.5 ± 1.3 μg mg−1) and found (38.8 ± 1.2 μg mg−1) values. The total concentration of Cr in plants has also been determined by ET AAS after dry ashing of samples at 650 °C. Results were confirmed by the analysis of BCR CRM 281 (Trace elements in Rye Grass) with good agreement between the found (2.12 ± 0.16 μg g−1) and certified value (2.14 ± 0.12 μg g−1).  相似文献   

9.
A new approach to performing extraction and preconcentration employing functionalized magnetic nanoparticles for the determination of trace metals is presented. Alumina-coated iron oxide nanoparticles were synthesized and used as the solid support. The nanoparticles were functionalized with sodium dodecyl sulfate and used as adsorbents for solid phase extraction of the analyte. Extraction, elution, and detection procedures were performed sequentially in the sequential injection lab-on-valve (SI-LOV) system followed by electrothermal atomic absorption spectrometry (ETAAS). Mixtures of hydrophobic analytes were successfully extracted from solution using the synthesized magnetic adsorbents. The potential use of the established scheme was demonstrated by taking cobalt as a model analyte. Under the optimal conditions, the calibration curve showed an excellent linearity in the concentration range of 0.01–5 μg L?1, and the relative standard deviation was 2.8% at the 0.5 μg L?1 level (n = 11). The limit of detection was 6 ng L?1 with a sampling frequency of 18 h?1. The present method has been successfully applied to cobalt determination in water samples and two certified reference materials.  相似文献   

10.
CoNi–barium ferrite magnetic composites with a high percentage of micrometric particles have been prepared by electrodeposition over silicon-based substrates. A cationic surfactant synthesized in our laboratory (4-ethylazobenzene-4′-(oxyethyl)trimethylammonium iodide-AZTMAI) has been used in order to favour the inclusion of magnetic particles into the alloy deposit. This surfactant reduces during cobalt–nickel electrodeposition and it is not embedded into the deposit. Moderate surfactant concentrations (1–5 g l−1), room temperature, the application of a magnetic field during the electrodeposition and a double-pulse technique favour the maximum incorporation of barium ferrite up to around 30–35 wt%. Magnetic properties of composites prepared tend to hard-magnetic ones, with different magnetization curves when silicon/seed-layer/composite samples are oriented parallel or perpendicularly to the applied magnetic field. Constricted-type magnetization curves were obtained.  相似文献   

11.
Cu was determined in a wide range of petroleum products from crude oil distillation using flame atomic absorption spectrometry (FAAS), electrothermal atomic absorption spectrometry (ETAAS) and inductively coupled plasma mass spectrometry (ICP-MS). Different procedures of sample preparation were evaluated: (i) mineralization with sulfuric acid in an open system, (ii) mineralization in a closed microwave system, (iii) combustion in hydrogen–oxygen flame in the Wickbold's apparatus, (iv) matrix evaporation followed by acid dissolution, and (v) acidic extraction. All the above procedures led to the transfer of the analyte into an aqueous solution for the analytical measurement step. It was found that application of FAAS was limited to the analysis of the heaviest petroleum products of high Cu content. In ICP-MS, the use of internal reference method (with Rh or In as internal reference element) was required to eliminate the matrix effects in the analysis of extracts and the concentrated solutions of mineralized heavy petroleum products. The detection limits (in original samples) were equal to, respectively, 10, 86, 3.3, 0.9 and 0.4 ng g 1 in procedures i–v with ETAAS detection and 10, 78, 1.1 and 0.5 ng g 1 in procedures i–iii and v with ICP-MS detection. The procedures recommended here were validated by recovery experiments, certified reference materials analysis and comparison of results, obtained for a given sample, in different ways. The Cu content in the analyzed samples was: 50–110 ng g 1 in crude oil, < 0.4–6 ng g 1 in gasoline, < 0.5–2 ng g 1 in atmospheric oil, < 6–100 ng g 1 in heavy vacuum oil and 140–300 ng g 1 in distillation residue.  相似文献   

12.
A new sorbent based on cysteine modified silica gel (SiG-cys) was prepared and studied for preconcentration and separation of noble metals Au(III), Pd(II), Pt(II), Pt(IV). Its extraction efficiency was examined by batch and column solid phase extraction procedures. Laboratory experiments performed showed that sorbent is characterized with high selectivity, permiting quantitative sorption (93–97%) of noble metals Au, Pd and Pt from acidic media 0.1–2 mol L? 1 HCl and unsignificant sorption (less than 2%) for common base metals like Cu, Fe, Mn and Zn. The analytes retained on the sorbent are effectively eluted with 0.1 mol L? 1 thiourea in 0.1 mol L? 1 HCl and measured by ETAAS or ICP OES under optimal instrumental parameters. The sorbent showed high mechanical and chemical stability and extraction efficiency was not changed after 500 cycles of sorption/desorption. The sorbent was successfully applied in analyticals procedures for preconcentration and determination of Au, Pd and Pt in geological and soil samples. Detection limits (3σ criteria) achieved, depending on the instrumental methods used are: ETAAS (0.005 μg L? 1 for Au in river and sea water, 0.002 μg g? 1 for Au in copper ore and copper concentrate); ICP OES (0.03 μg L? 1 for Pd and 0.06 μg L? 1 for Pt in river and sea water, 0.006 μg g? 1 for Pd in copper ore and copper concentrate and 0.002 μg g? 1 for soluble Pt in soil). The accuracy of the procedures developed was confirmed by added/found method for sea and river water; by the analysis of national certified materials (copper ore and copper concentrate for Au and Pd) and by determination of the sum of soluble Pt(II) + Pt(IV) in spiked soil samples.  相似文献   

13.
This work investigates the potential of high-resolution continuum source graphite furnace molecular absorption spectrometry for the direct determination of bromine in polymers, which could be interesting in view of the current regulations restricting the use of organobrominated compounds. The method developed is based on the addition of Ca (300 μg) and Pd (30 μg) to favor the formation of CaBr, which is monitored at the main molecular “lines” (rotational spectra) found in the vicinity of 625.315 nm.It was found that accurate results could be obtained for all the samples investigated (polyethylene, polypropylene and acrylonitrile butadiene styrene certified reference materials) using any of the lines studied and constructing the calibration curve with aqueous standards. Furthermore, the combined use of the main four CaBr lines available in the spectral area simultaneously monitored permits to easily expand the linear range up to 2000 ng, provides a limit of detection of 1.8 ng (1.8 μg g 1 for a mass of 1 mg) and further improves precision to values between 3–7% RSD. Overall, the method proposed seems suited for the fast and simple control of these types of samples (approximately 10 min for sample are required), circumventing the traditional problems associated with sample digestion (e.g., losses of volatile compounds), and providing sufficient sensitivity to easily comply with regulations.  相似文献   

14.
The efficacy of gamma radiation decontamination of industrial casein, a milk protein utilized as a component of many food and non-food products has been studied. Low-fat milk powder was also included with a purpose to study the microflora survival in protein-rich materials. Microbial analysis of the samples prior to irradiation showed that the initial total viable count was higher than 6.0 log cfu g−1 in both casein and milk powders. The contamination of casein with moulds and yeasts was found to be equal to 3.56 log cfu g−1. The counts of coliforms have not exceeded the value of 2.48 log cfu g−1. Radiation processing of casein and milk powder has substantially reduced the microbial population of all samples. The dose of 5 kGy was sufficient to reduce the total microflora and coliforms counts to the level permitted for food products. Survivals of microorganisms were analyzed by the generalized exponential equation, SF=exp[−D/Do)α]. Values of an exponent, α, standing for the dispersion parameter, were equal to 0.65 and 0.70 for microorganisms contaminating casein and milk powders, respectively. The numerical value of the dispersion parameter α<1 indicates the concave dependence of a logarithm of surviving fraction versus radiation dose. No difference in microflora survival in irradiated samples tested immediately and in samples stored for 1-month after irradiation has been noticed.  相似文献   

15.
This study was performed to determine the concentrations of cadmium, lead, copper and zinc in the edible muscle of pelagic (Scomberomorus commerson, Chirocentrus dorab, Sphyraena jello, Rachycentron conadum, Thunus tonggol, and Tenualosa ilisha) and demersal (Nemipterus japonicas, Epinephelus coioides, Platycephalus indicus, Psettodes erumei, Pomadasys argenteus, and Acanthopagrus latus) fish species from the Persian Gulf during winter and summer. The samples were analyzed by the derivative potentiometric stripping technique; and the results were expressed as μg/g of wet weight. The obtained range of metals in fish species was 0.024–0.111 μg/g for cadmium, 0.057–0.471 μg/g for lead, 0.799–4.790 μg/g for copper and 3.226–11.390 μg/g for zinc. The study revealed that seasonal variation influenced the concentration of metals in the samples. The highest concentration of cadmium, lead, copper and zinc was found in Platycephalus indicus (0.147 μg/g), Acanthopagrus latus (0.534 μg/g), Psettodes erumei (5.294 μg/g) and Psettodes erumei (13.528 μg/g) in winter, respectively. Moreover, demersal fish species had higher cadmium, lead and zinc concentrations, but lower copper content than pelagic ones. Our study demonstrated that the estimated daily and weekly intakes of lead, copper and zinc, and estimated monthly intake of cadmium via consumption of fish flesh were below the PTDI, PTWI and PTMI values established by FAO/WHO.  相似文献   

16.
A tantalum electrode is reported as an alternative electrode for electrochemical stripping analysis for the first time. Several key operational parameters that influenced the electroanalytical signals were optimized, such as pH of the electrolyte, deposition potential and deposition time. The tantalum electrode yields well-defined and sharp stripping signals for trace cadmium analysis when combined with differential pulse anodic stripping voltammetry. Under the optimized condition the electrode shows good linear behavior in the examined concentration in the range of 20–200 μg L?1 for cadmium, with a detection limit (3σ) of 0.57 μg L?1 followed a 5-min deposition step under ? 1.3 V. It also shows good reproducibility with a relative standard deviation of 2.56% for ten consecutive measurements. The sensor was also employed for real sample determination and exhibited excellent performance compared with the result of inductively coupled plasma-mass spectrometry.  相似文献   

17.
A high-resolution continuum source atomic absorption spectrometric method was developed and validated for the determination of NiII(3-OMe-salophene) (a complex with anticancer activity in vitro) in MCF7 and HT29 cancer cell lines. The primarily most sensitive line 232.003 nm was selected for analysis. Compared to the standard nickel, the absorbance values obtained for NiII(3-OMe-salophene) complex was at least 93% at the upper end of linear range of the calibration curve. The use of common matrix modifiers including magnesium nitrate, palladium nitrate, ammonium hydrogen phosphate, lanthanum chloride and calcium nitrate brought no significant improvement in the GF AAS measurement. The dynamic linear working range of the calibration curve was found to be between 2.16 and 12.0 μg L? 1 (ppb). This covers a concentration range of the complex from 0.036 μM to 0.204 μM. Typical coefficients of variation (n = 6) ranged from 0.2% to 6.7% for Ni in NiII(3-OMe-salophene). Detection and quantitation limits were 0.65 and 2.16 μg L? 1 (ppb), respectively. The proposed method has been successfully applied to the analysis of NiII(3-OMe-salophene) complex in cell lines of breast cancer (MCF7) and colon cancer (HT29). However, being based on the determination of nickel in the salophene complex, the method was unsuitable for the quantitation of NiII(3-OMe-salophene) in serum albumin, which originally contains significant amount of nickel. For this purpose, a high performance liquid chromatographic method with a monolithic silica RP-18e column has been developed to quantitate the complex in serum albumin. The developed chromatographic method depends on detecting the whole complex in serum rather than the bounded nickel. A mobile phase consisting of 25 mM phosphate buffer pH 3/methanol (30:70, v/v) was pumped at a flow rate of 1 mL min? 1. The eluted complex was monitored at a wavelength of 250 nm. The dynamic linear working range of the calibration curve for the developed LC method was found to be between 100 and 20,000 μg L? 1 (0.23–46.18 μM). Detection and quantitation limits were 30 and 100 μg L? 1 (ppb), respectively.  相似文献   

18.
A series of novel neutral nickel complexes, aryl (phenyl or naphthyl) nickel N-alkyl-6-(1-(arylimino)ethyl)picolinamides, were synthesized and characterized by NMR and IR spectroscopy and elemental analysis. Single-crystal X-ray diffraction analyses of the complexes C2, C3 and C7 reveal distorted square-planar geometry along with the molecular structure of one free ligand L1. On activation with diethylaluminum chloride (Et2AlCl), the nickel complexes exhibited moderate catalytic activities for ethylene oligomerization, and the catalytic activity was up to 2.45 × 105 g mol?1(Ni) h?1 in the presence of 1 equiv. PPh3. Moreover, these complexes also exhibit moderate activities for Kumada–Corriu reaction and polymerization of methyl methacrylate.  相似文献   

19.
An environmentally friendly and cost-competitive way of producing hydrogen is the catalytic steam reforming of biomass pyrolysis liquids, known as bio-oil, which can be separated into two fractions: ligninic and aqueous. Acetic acid has been identified as one of the major organic acids present in the latter, and catalytic steam reforming has been studied for this model compound. Three different Ni coprecipitated catalysts have been prepared with varying nickel content (23, 28 and 33% expressed as a Ni/(Ni + Al) relative at.% of nickel). Several parameters have been analysed using a microscale fixed-bed facility: the effect of the catalyst reduction time, the reaction temperature, the catalyst weight/acetic acid flow rate (W/mHAc) ratio, and the effect of the nickel content. The catalyst with 33% Ni content at 650 °C showed no significant enhancement of the hydrogen yield after 2 h of reduction compared to 1 h under the same experimental conditions. Its performance was poorer when reduced for just 0.5 h. For W/mHAc ratios greater than 2.29 g catalyst min/g acetic acid (650 °C, 33% Ni content) no improvement was observed, whereas for values lower than 2.18 g catalyst min/g acetic acid a decrease in product gas yields occurred rapidly. The temperatures studied were 550, 650 and 750 °C. No decrease in product gas yields was observed at 750 °C under the established experimental conditions. Below this temperature, the aforementioned decrease became more important with decreasing temperatures. The catalyst with 28% Ni content performed better than the other two.  相似文献   

20.
《Microchemical Journal》2007,85(1-2):75-79
A highly sensitive and accurate method for preconcentration and determination of ultra trace amounts of cobalt and nickel ions in water samples is proposed. The preconcentration is achieved using C18-silica extraction disks modified with 5-(6-methoxy-2-benzothiazoleazo)-8-aminoquinoline (MBTAQ). The retained ions on the prepared solid phase was eluted with 10 ml of 0.01 M nitric acid and measured by inductively coupled plasma-optical emission spectrometry (ICP-OES). The influence of the type and amount of eluent used, pH, sample and eluent flow rates, amount of MBTAQ and the effect of other ions on extraction efficiency were investigated. The limits of detection of the method were 0.08 and 0.06 μg l 1 for cobalt and nickel, respectively, and provide an enrichment factor of 100. The results obtained on 10 successive extractions and elution cycles revealed relative standard deviations of 1.5 and 1.0% for cobalt and nickel, respectively. The proposed method has been applied to the determination of ultra trace amounts of cobalt and nickel ions in natural and synthetic water samples with satisfactory results.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号