首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Heat treatment with the presence of hydrogen (H2) that react with GeE' centers (Ge≡) at high temperature will weaken the refractive index modulation of grating fabricated in hydrogen-loaded normal germanosilicate fiber. Pre-annealing treatment of the above fiber was demonstrated to be able to enhance the grating's thermal stability effectively. 0.37-nm blue-shift of the reflected Bragg wavelength was observed.  相似文献   

2.
A strain-induced birefringent double-clad fiber Bragg grating   总被引:2,自引:0,他引:2  
Fiber birefringence plays an important role in complex polarization dynamics of rare-earth-doped fiber lasers[1]. Recently some novel lasers and double-clad (DC) fiber lasers (DCFL), have attracted much interest for high power lasers. Such lasers have a second cladding area to facilitate pumping with semiconductor lasers. Different cladding structures, such as rectangular, star-shape, and circular, are all in use to provide an efficient absorption of pump energy by the fiber core. It raises…  相似文献   

3.
To test whether the fiber Bragg grating (FBG) sensor can endure the steady-state inertial loads caused by the acceleration and the sensing properties during the loads, a FBG strain and temperature sensor with aluminium alloy substrate package was designed, and the acceleration performance on the sensor was tested. The sizes of FBG strain and temperature sensor were designed and its package process was described. The strain and temperature sensing mechanisms of FBG sensor were analyzed, and the spectrum detection and demodulation system based on volume phase grating and linear array photodetector was developed. Finally, the acceleration test equipment was established, and the acceleration performance test of the selected FBG strain and temperature sensor was carried out in accordance with the requirements and methods of GJB150.15A acceleration test. The experimental results show that in the 2 min performance test before and after the acceleration test, the wavelength offset is below to ±50 pm, and the change of light intensity is below to 0.3 V. In acceleration test, the maximum fluctuation of wavelength offset is ±7 pm, and the light intensity is in the range of 1.3 V~4.003 V. It is proved that the designed FBG sensor has the ability to endure the acceleration loads and has the good sensing performance during the acceleration loads. Copyright ©2022 Journal of Applied Optics. All rights reserved.  相似文献   

4.
《Opto-Electronics Review》2019,27(3):233-240
In this paper, we theoretically analyze the slow-light π-phase-shifted fiber Bragg grating (π-FBG) and its applications for single and multipoint/quasi-distributed sensing. Coupled-mode theory (CMT) and transfer matrix method (TMM) are used to establish the numerical modeling of slow-light π-FBG. The impact of slow-light FBG parameters, such as grating length (L), index change (Δn), and loss coefficient (α) on the spectral properties of π-FBG along with strain and thermal sensitivities are presented. Simulation results show that for the optimum grating parameters L = 50 mm, Δn = 1.5×10−4, and α = 0.10 m-1, the proposed slow-light π-FBG is characterized with a peak transmissivity of 0.424, the maximum delay of 31.95 ns, strain sensitivity of 8.380 με-1, and temperature sensitivity of 91.064 °C-1. The strain and temperature sensitivity of proposed slow-light π-FBG is the highest as compared to the slow-light sensitivity of apodized FBGs reported in the literature. The proposed grating have the overall full-width at half maximum (FWHM) of 0.2245 nm, and the FWHM of the Bragg wavelength peak transmissivity is of 0.0798 pm. The optimized slow-light π-FBG is used for quasi-distributed sensing applications. For the five-stage strain quasi-distributed sensing network, a high strain dynamic range of value 1469 με is obtained for sensors wavelength spacing as small as 2 nm. In the case of temperature of quasi-distributed sensing network, the obtained dynamic range is of 133 °C. For measurement system with a sufficiently wide spectral range, the π-FBGs wavelength grid can be broadened which results in substantial increase of dynamic range of the system.  相似文献   

5.
A novel gain-clamped long wavelength band (L-band) erbium-doped fiber amplifier (EDFA) is proposed and experimented by using a fiber Bragg grating (FBG) at the input end of the amplifier. This design provides a good gain clamping and decreases noise effectively. It uses two sections of erbium-doped fiber (EDF) pumped by a 1480-nm laser diode (LD) for higher efficiency and lower noise figure (NF). The gain is clamped at 23 dB with a variation of 0.5 dB from input signal power of -30 to -8 dBm for 1589 nm and NF below 5 dB is obtained. At the longer wavelength in L-band higher gain is also obtained and the gain is clamped at 16 dB for 1614 nm effectively. Because the FBG injects a portion of backward amplified spontaneous emission (ASE) back into the system, the gain enhances 5 dB with inputting small signal.  相似文献   

6.
A method of measuring vibration by using fiber Bragg grating (FBG) and demodulating the spectrum by blazed grating is introduced. The sensor system is made of a simple supported beam with a FBG adhered to its upper surface. A blazed grating is used to demodulate the changing spectrum that is got from the sensor system, and a line charge-coupled device (CCD) is used to accept the diffraction spectrum. Through analyzing the number of the CCD's pixels, we can get the amplitude of vibration and the change of the temperature. The experimental results show that the vibration amplitude of the exciter matches the detected signal under the stable frequency. The temperature shift and vibration signal are also successfully separated.  相似文献   

7.
We propose and experimentally demonstrate a novel fiber-optic edge filter based on modulating the chirp rate of a π-phase-shifted fiber Bragg grating (FBG) operating in transmission mode. The phase shift induced passband in the transmission spectrum is utilized as the edge filter. The dependence of the π-phase-shifted FBG’s transmitted spectral response on the chirp rate has been numerically studied in detail and experimentally confirmed, to the best of our knowledge, for the first time. The linear wavelength range of the proposed edge filter can be tuned by changing the chirp rate of FBG. The edge filter is further tested as a wavelength interrogator, and the experimental results are in good agreement with numerical results. The proposed fiber-optic edge filter has several unique advantages which include simple structure, cost effectiveness, high sensitivity, flexible tunability, and optical circulator is not required, and thus has interesting potential applications, especially as a wavelength interrogator in FBG foot sensors, FBG ultrasound and vibration sensors, and FBG distributed sensors, where the required wavelength ranges are very small (<0.4 nm).  相似文献   

8.
A self-seeded fiber laser incorporated with a fiber Bragg grating external cavity semiconductor laser (FBG-ECL) and a Mach-Zehnder interferometer (MZI) were reported in this paper. The MZI provided a Q-switching with response time in the order of micro-seconds. The FBG-ECL provided narrow pulses as seeds to shorten the Q-switched pulses. Experimentally, pulse width of 0.8 μs was measured, which was one fifth of the pulse width without self-seeding.  相似文献   

9.
A new structure of short-cavity random fiber laser(RFL) with narrow linewidth lasing is proposed. Aπ-phase-shifted fiber Bragg grating(FBG) loop mirror was used in the RFL for spectral filtering and to suppress multi-mode oscillation due to the narrow transmission window. The random feedback of the RFL was implemented by a randomly dispersed weak reflection FBG array. The high gain of the erbium-doped fiber and a half-open cavity design results in a low lasing threshold. The linewidth of the laser was 225 Hz with58 d B side-mode-suppression ratio. The laser threshold was 4.5 mW, and the optical signal-to-noise ratio was up to 63 dB.  相似文献   

10.
A theoretical model of the fiber Bragg grating Fabry–Perot(FBG-FP) transmission spectrum considering loss of FBG and intra-cavity fiber is presented. Several types of FBG-FPs are inscribed experimentally, and their spectra are measured.The results confirm that weak intra-cavity loss is enhanced at the resonance transmission peak, that is, loss of transmission peaks is observably larger than other wavelengths. For FBG-FPs with multi resonance peaks, when the resonance peak wavelength is closer to the Bragg wavelength, the more significant loss effect of resonance transmission peak is exhibited.The measured spectra are fitted with the presented theoretical model. The fitted coefficient of determinations are near 1,which proves the validity of the theoretical model. This study can be applied to measure FBG loss more accurately, without a reference light. It can play an important role in FBG and FBG-FP writing process optimization and application parameter optimization.  相似文献   

11.
A unified and comprehensive study on the small-signal intensity and frequency modulation characteristics of a fiber Bragg grating Fabry–Perot (FBG–FP) laser are numerically investigated. The effect of injection current, temperature, external optical feedback (OFB), nonlinear gain compression factor, fiber grating (FG) parameters and spontaneous emission factor on modulation response characteristics are presented. The rate equations of the laser model are presented in the form that the effect of temperature (T) and external optical feedback (OFB) are included. The temperature dependence (TD) of laser response is calculated according to the TD of laser cavity parameters instead of directly using the well-known Parkove equation. It is shown that the optimum external fiber length (Lext) is 3.1 cm and the optimum range of working temperature for FGFP laser is within ±2 °C from the FBG reference temperature (To). Also, the antireflection (AR) coating reflectivity and the linewidth enhancement factor have no significant effect on the modulation spectra. It is also show that modulation response is extremely sensitive to the OFB level, high injection current and gain compression factor. The study indicates clearly that good dynamic characteristic can be obtained by system parameters optimization.  相似文献   

12.
Chen XF  Ma ZB  Li WH  Yin XN  Wu ZJ 《Optics letters》1999,24(22):1558-1560
A superchirped moiré grating has multiple superimposed chirped Bragg gratings. We show that a superchirped moiré grating can be formed in an acousto-optic superlattice with a chirped fiber Bragg grating. There are multiple transmission peaks related to Fabry-Perot resonance in the transmission spectrum. The peak spacing is varied by the acoustic frequency. The proposed devices can be used as tunable multiple-passband transmission filters and switches.  相似文献   

13.
Based on the coupled-mode theory of fiber grating and codes theory, the design of an optical code division multiple access (OCDMA) encoder/decoder with stepped chirped fiber Bragg grating (SCFBG) has been proposed. The length of each uniform subgrating, the realization of encoding and decoding are provided. Numerical result is also presented and discussed.  相似文献   

14.
A novel type of sampled fiber Bragg gratings (FBGs) written in polarization-maintaining fiber (PMF) is proposed.The reflection spectrum,time delay,and group velocity dispersion (GVD) of the gratings are an- alyzed.In addition,the reflection spectrum is optimized by apodization.The scheme of multi-wavelength output based on the gratings is proposed,which could be used as a multi-wavelength polarization filter in the density wavelength division multiplexed (DWDM) system.  相似文献   

15.
Channel spacing halving and multi-channel apodisation of sampling fiber Bragg grating (SFBG) based on Moire effect are demonstrated, which are realized by stretching and double exposure in fabrication of the SFBG. The experiment and theoretical analysis showed that the channel spacing could be halved when the period of Moire grating was four times of the period of sampling and the initial phase difference of two exposures was even times of m. The multi-channel apodisation could be realized when the period of Moire fringe was twice the length of SFBG and the initial phase difference of two exposures was odd times of m. A novel method to control the initial phase difference of two exposures is presented in this paper. Using this technique, we fabricated two SFBGs with channel spacing of 50 and 100 G by a same phase mask and an apodized SFBG with channel spacing of 100 G.  相似文献   

16.
A wavelength tunable all fibre laser which utilizes Tm3+-doped fluoride fibre as a gain mechanism emitting around a wavelength of = 2.3 m is reported. Tm3+-doped fluoride fibre was coupled to a fibre Bragg grating inscribed in silica. This laser was evaluated by employing it as a wavelength tunable source in a methane gas optical sensor. A minimum gas detectivity of 100 ppm m limited by the ability to prepare low concentrations of gases was achieved. Emission wavelength control was implemented by thermally tuning the grating, although this method may prove to be too slow and cumbersome for practical use. A model describing the coupling between the silica fibre Bragg grating and the Tm3+-doped fibre was developed and integrated with a fibre laser model. This theoretical framework was used to examine the optimum silica and fluoride fibre parameters to achieve the maximum coupling between the fibres, with the aim of further reducing the fibre laser threshold.  相似文献   

17.
In this paper, the effect of various taper profiles on dispersion slope compensation in optical fiber links is studied. Theoretical and numerical investigation of the linear and nonlinear group delays of tapered fiber Bragg grating's (T-FBG) under strain is made. Calculation is performed using Matlab code based on solving the coupled mode equation using transfer matrix method. Our study shows that the linear tapered FBG profile provide the best result than the linear-exponential profile which can compensate up to 500 km. As result, the spectral characteristics of tapered grating allow them to be used efficiently in high bit rates WDM and long-haul optical communication systems for chromatic dispersion of single-mode fiber.  相似文献   

18.
Using a fiber Bragg grating (FBG) and a Fabry-Perot cavity composed of two fiber Bragg gratings (FBGFP) as its frequency-selective components, a type of single frequency all-fiber ring laser permits oscillation only on one longitudinal mode of the main cavity without modehopping while the cavity length can be up to tens of meters. The salient feature is due to the single narrowband resonance of the FBGFP filter. Such a fiber ring laser is achieved experimentally, and the laser mode is limited inside the single resonance of the FBGFP.  相似文献   

19.
Mode characteristics of hollow core Bragg fiber   总被引:1,自引:0,他引:1  
Analytical expression to calculate propagation constant and mode field of the hollow core Bragg fiber is derived. Numerical results are presented. It is shown that the fundamental mode of the hollow core Bragg fiber is circularly symmetric TE01 mode with no polarization degeneracy, while the higher order mode may be HE11, TM01, or TEo2 etc.. This property is different from conventional optical fiber that its fundamental mode is the linearly polarized HE11 mode and is polarization degeneracy.  相似文献   

20.
The paper proposes a novel two stage L-band erbium doped fiber amplifier with forward–backward pumping scheme for transmission of 32 wavelength division multiplexed (WDM) channels. It is gain clamped with an in-line fiber Bragg grating (FBG) to provide flat gain over 45 nm by restricting and reutilizing amplified spontaneous emission (ASE). We demonstrate that it provides an efficient small signal gain with minimum noise figure of over 20 dB and 5.5 dB, respectively, in the L-band region (1565–1610 nm) by comparing with its forward and backward pumped counterparts with fixed Er3+ fiber length of 20 m for −30 dBm/channel input power. We also obtain the gain and noise figure dependence as a function of each of the Er3+ fiber lengths, pump power (both 1480 and 980 nm), and temperature. Hence a 10 nm region (1580–1590 nm) has been acknowledged where temperature variations become constricted for 30 °C variations (15–45 °C).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号