首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
A Q-switched ytterbium-doped fiber laser (YDFL) is proposed and demonstrated using a newly developed multi-walled carbon nanotubes polyethylene oxide (MWCNTs-PEO) film as a passive saturable absorber (SA). The saturable absorber is prepared by mixing the MWCNTs homogeneous solution into a dilute PEO polymer solution before it is left to dry at room temperature to produce thin film. Then the film is sandwiched between two FC/PC fiber connectors and integrated into the laser cavity for Q-switching pulse generation. The laser generates a stable pulse operating at wavelength of 1060.2 nm with a threshold pump power of 53.43 mW. The YDFL generates a stable pulse train with repetition rates ranging from 7.92 to 24.27 kHz by varying 980-nm pump power from 53.42 to 65.72 mW. At 59.55-mW pump power, the lowest pulse width and the highest pulse energy are obtained at 12.18 μs and 143.5 n J, respectively.  相似文献   

2.
A Q-switched ytterbium-doped fiber laser(YDFL)is proposed and demonstrated using a newly developed multi-walled carbon nanotubes polyethylene oxide(MWCNTs-PEO)film as a passive saturable absorber(SA).The saturable absorber is prepared by mixing the MWCNTs homogeneous solution into a dilute PEO polymer solution before it is left to dry at room temperature to produce thin film.Then the film is sandwiched between two FC/PC fiber connectors and integrated into the laser cavity for Q-switching pulse generation.The laser generates a stable pulse operating at wavelength of 1060.2 nm with a threshold pump power of 53.43 mW.The YDFL generates a stable pulse train with repetition rates ranging from7.92 to 24.27 kHz by varying 980-nm pump power from 53.42 to 65.72 mW.At 59.55-mW pump power,the lowest pulse width and the highest pulse energy are obtained at 12.18μs and 143.5 nJ,respectively.  相似文献   

3.
A 1550 nm Q-switched fiber laser using a carbon platinum saturable absorber deposited on side-polished fiber(SPF) is proposed and demonstrated. The SPF is approximately 2 mm with a polarization-dependent loss(PDL)of 0.4 dB and an insertion loss of 2.5 dB. A stable Q-switched output spectrum is obtained at 1559.34 nm with a peak power of ~6 mW, a pulse width of 1.02 μs, pulse energy of 5.8 nJ, average output power of 0.76 mW, and a repetition rate of 131.6 kHz taken at a pump power of 230.0 mW. A signal-to-noise ratio of 49.62 d B indicates that the Q-switched pulse is highly stable.  相似文献   

4.
Zhang  L. Q.  Zhuo  Z.  Wang  J. X.  Wang  Y. Z. 《Laser Physics》2012,22(2):433-436
A passively graphene Q-switched Erbium doped fiber laser around 1.5 μm is demonstrated in this paper. The graphene saturable absorber was fabricated by sandwiching a thin graphene film produced via chemical vapor deposition between two FC fiber connectors. Stable pulse trains were obtained with the pulse repetition rate varying between 34.72 and 53.2 kHz and the average output power ranging from 0.504 mW to 0.926 mW. The achieved shortest pulse duration and highest pulse energy were 3.2 μs and 17.41 nJ, respectively.  相似文献   

5.
A mode locked Er-doped fiber laser based on a single-wall carbon nanotube saturable absorber is demonstrated. A high quality single-wall carbon nanotubes (SWCNTs) absorber film is fabricated by a polymer composite. The pulse duration is 488 fs with 9.6-nm spectral width at the center of 1564 nm. The repetition rate is 30.4 MHz. The maximum output power is 3 mW. And the single pulse energy is 0.1 nJ.  相似文献   

6.
7.
We have proposed and demonstrated a passively harmonic mode-locked fiber laser based on a single-walled carbon nanotube saturable absorber (SWCNT-SA) that has a controllable repetition rate. With the pump power fixed, we have experimentally observed harmonically mode-locked optical pulses with repetition rates that can be controlled over the range from the fundamental to the seventh-order mode through careful adjustment of the polarization controller only. From the experimental results, we deduce that the likely origin of the self-stabilization is the result of global and local soliton interactions induced by the continuous wave (CW) components.  相似文献   

8.
A stable mode-locked fiber laser employing a 49 cm long bismuth oxide based erbium doped fiber (Bi-EDF) by using a slow saturable absorber is demonstrated. Near transform limited short pulses with a repetition rate of 8.27 MHz are obtained at a wavelength of 1560 nm with a maximum spectral width of 15 nm. Results indicate that pulse characteristics are strongly dependent on pump power rather than spectral width. Moreover the Time-Bandwidth products (TBWP), pulse duration, the energy fluctuation and timing jitter decrease with increasing pump power. The pulse width is continuously varied from 1.2 ps to less than 300 fs. It produces stable mode locking with a maximum spectral width of 15 nm, minimum timing jitter of 4 ps and energy fluctuations of 2.5%. The pulse train was amplified using a two-stage amplifier up to 447 mW average power corresponding to peak powers of 177.3 kW.  相似文献   

9.
石墨烯可调谐被动调Q掺铒光纤激光器   总被引:1,自引:0,他引:1       下载免费PDF全文
基于光学沉积方法,制备了石墨烯可饱和吸收体,并利用此可饱和吸收体搭建了环形腔结构的被动调Q掺铒光纤激光器,实现了稳定的调Q激光脉冲输出,其重复频率为5.1~14.2 kHz,最窄激光脉冲宽度为8 s,最大平均功率为162.3 W,且通过调节偏振控制器,中心波长在1556~1558 nm可调。  相似文献   

10.
氧化石墨烯被动调Q掺铒光纤激光器   总被引:1,自引:1,他引:1       下载免费PDF全文
报道了基于氧化石墨烯的被动调Q掺铒光纤激光器。激光器采用环形腔结构,调Q器件为自制的氧化石墨烯可饱和吸收镜。泵浦功率在81~505 mW范围内时,得到了重复频率68~124 kHz的稳定的调Q脉冲输出,脉宽为0.47~1.60 s。由于泵浦功率限制,激光器最大输出功率为10 mW, 相应单脉冲能量为80.6 nJ。此种基于氧化石墨烯可饱和吸收体的被动调Q光纤激光器体积小、成本低廉、结构简单、稳定性高、光束质量高,具有广阔的应用前景。  相似文献   

11.
We report on a LD-end-pumped passively Q-switched Nd:YAG ceramic laser by using a novel single wall carbon nanotube saturable absorber (SWCNT-SA). The SWCNT wafer was fabricated by electric Arc discharge method on quartz substrate with absorption wavelength of 1064 nm. We firstly investigated the continuous wave (CW) laser performance and scattering properties of Nd:YAG ceramic sample. For the case of passively Q-switched operation, a maximum output power of 376 mW was obtained at an incident pump power of 8.68 W at 808 nm, corresponding to an optical–optical conversion efficiency of 4.3%. The repetition rate as the increase of pump power varied from 14 to 95 kHz. The minimum pulse duration of 1.2 μs and maximum pulse energy of 4.5 μJ was generated at a repetition rate of 31.8 kHz.  相似文献   

12.
We report a design for a power-scalable all-fiber passively Q-switched laser that uses a large mode area Yb-doped fiber as a gain medium adiabatically tapered to an unpumped single-mode Yb-doped fiber, which serves as a saturable absorber. Through the use of a comprehensive numerical simulator, we demonstrate a passively Q-switched 1030 nm pulsed laser with 14 ns pulse duration and 0.5 mJ pulse energy operating at 200 kHz repetition rate. The proposed configuration has a potential for orders of magnitude of improvement in both the pulse energies and durations compared to the previously reported result. The key mechanism for this improvement relates to the ratio of the core areas between the pumped inverted large mode area gain fiber and the unpumped doped single-mode fiber.  相似文献   

13.
A passively Q-switched erbium-doped fiber(EDF) laser is proposed and demonstrated utilizing a zirconium disulfide(ZrS_2)-based saturable absorber(SA). ZrS_2 nanosheets are prepared, whose modulation depth,saturation intensity, and nonsaturable absorbance are measured to be 14.7%, 0.34 MW/cm~2, and 17.4%, respectively. Then, a Q-switched EDF laser is implemented by the ZrS_2-SA. The pulse repetition rate varies from 40.65 to 87.1 k Hz when the pump power changes from 55 to 345 mW. The shortest pulse width is 1.49 μs with pulse energy of 33.5 nJ. As far as we know, this is the shortest pulse width obtained by a ZrS_2-SA so far.  相似文献   

14.
X. Wu  X.N. Luan  Q. Zhang 《Optics Communications》2011,284(14):3615-3618
We report on the experimental observation of bound states of solitons in an erbium-doped fiber laser passively mode-locked by the carbon nanotube saturable absorber. Bound states of solitons with various pulse separations are obtained. While the tightly bound solitons always exhibit the same set of fixed discrete pulse separations with π or π/2 phase difference, the feature becomes less obvious for the loosely bound solitons. The result that various states of the bound solitons were obtained in the same fiber laser makes a systematic experimental study on them and a comparison of their properties possible. Our results once again show that the bound soliton emission is an intrinsic feature of the mode-locked soliton fiber lasers.  相似文献   

15.
A passively Q-switched Er-doped fiber laser using a semiconductor saturable absorber mirror (SESAM) is demonstrated. Q-switching is observed with the output power produced at a slope efficiency of 29.4% with respect to the absorbed pump power. The maximum average output power of 8.37 mW is achieved. The pulse repetition frequency obtained can be turned from 1.72 to 7.95 kHz. The pulse energy of 17.2 nJ has been obtained at the pump power of 46.75 mW, and the pulse width is 30 μs.  相似文献   

16.
本文采用双包层掺镱光纤作为增益介质,用单壁碳纳米管作为饱和吸收体,获得最高输出功率为336 mW的锁模脉冲激光.用飞秒激光诱导水击穿法直接在单模光纤上制备出D形区,通过在D形光纤上滴涂单壁碳纳米管溶液,成功制备出碳纳米管饱和吸收体,并对其饱和吸收特性进行测试,发现其调制深度为27%.利用该饱和吸收体作为锁模器件,制备出具有环形腔结构的锁模光纤激光器.当抽运功率为4W时,获得了脉宽为93.8 fs,中心波长为1083.8 nm,3 dB谱宽为8.6 nm,重复频率为5.59 MHz,平均功率为336 mW的飞秒脉冲激光输出.  相似文献   

17.
A tunable passively Q-switched ytterbium-doped fiber laser using few-layer gallium selenide(GaSe) as a saturable absorber(SA) is demonstrated.The few-layer GaSe SA,which is fabricated by the mechanical exfoliation method,is able to generate a Q-switched fiber laser that has a maximum repetition rate of 92.6 kHz and a minimum pulsed width of 2.3 μs.The highest pulse energy exhibited by the generated pulse is 18.8 nJ with a signal to noise ratio of ~40 dB.The tunability of the proposed laser covers from 1042 to 1082 nm,giving a tuning range of 40 nm.  相似文献   

18.
We propose a Q-switched Er-doped fiber laser(EDFL) with a threshold pumping power as low as 7.4 mW, and demonstrate using graphene polyvinyl alcohol(PVA) thin film as a passive saturable absorber(SA). The SA is fabricated from graphene flakes, which is synthesized by electrochemical exfoliation of graphite at room temperature in 1% sodium dodecyl sulfate aqueous solution. The flakes are mixed with PVA solution to produce a thin film, which is then sandwiched between two ferrules to form a SA and integrated in the EDFL ring cavity to generate a stable Q-switched pulse train. The pulse train operates at 1560 nm with a threshold pump power of 7.4 mW. At maximum 1480 nm pump power of 33.0 mW, the EDFL generates an optical pulse train with a repetition rate of 27.0 kHz and pulse width of 3.56 μs. The maximum pulse energy of 39.4 nJ is obtained at a pump power of 14.9 mW. This laser can be used as a simple and low-cost light source for metrology, environmental sensing, and biomedical diagnostics.  相似文献   

19.
Long  J. Y.  Shen  D. Y.  Wang  Y. Sh.  Zhao  W.  An  Y.  Zhou  W. 《Laser Physics》2012,22(5):986-990
We demonstrate a diode-pumped passively Q-switched Tm-doped double-cladding silica fiber laser operating at wavelength of 1960 nm using an anti-resonant Fabry-Perot saturable absorber as passive modulation element. To determine a relatively preferable fiber length for stable cw Q-switched operation, three active fiber simples with the length of 1.1, 5.3, and 7.0 m were employed respectively in our experiments. With 1.1 m gain fiber, we generated Q-switched pulses with a pulse width of 245 ns and an average power of up to 2.2 W at a repetition rate of 620 kHz. For the longer two fiber samples, Q-switched operation with longer pulse duration, Q-switched mode-locking and cw mode-locking were observed, respectively.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号