首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Multi-pulse laser ablation of silver in deionized water was studied. The laser beams were arranged in a cross-beam configuration. In our experiments, two single-mode, Q-switched Nd-Yag lasers operating at 1064 nm, pulse duration of 5.5 ns and 10 Hz rep rate were used. The laser fluence of the second beam was 0.265 J/cm2 for all tests. Two levels of the laser fluences were used for the ablating beam: 0.09 and 0.265 J/cm2 (11,014 and 33,042 J/cm2 at the focal point, respectively). The silver target was at 50 mm from the cell window and 10 mm deep. The second beam was aligned parallelly with the silver target and focused at 2 mm in front of the focal point of the ablating beam. For all cases, the delay time between the ablating beam and the cross-beam was 40 μs. In general, the ablated particles were almost all spherical. For fluence of 0.09 J/cm 2 and single-beam approach, the mean particle size was about 29 nm. The majority of the particles, however, were in 19–35 nm range and there were some big ones as large as 50–60 nm in size. For double-beam approach, the particles were smaller with the average size of about 18 nm and the majority of the particles were in 9–21 nm range with few big one as large as 40 nm. For the beam fluence of 0.265 J/cm2 and single-beam configuration, the particle sizes were smaller, the mean particles size was about 18 nm and the majority of the particles were in the range of 10–22 nm with some big one as large as 40 nm. For double-beam approach, the mean particle size was larger (24.2 nm) and the majority of the particle were distributed from 14 to 35 nm with some big particles can be found with sizes as big as 70 nm. Preliminary measurements of the thermal conductivity and viscosity of the produced samples showed that the thermal conductivity increased about 3–5% and the viscosity increased 3.7% above the base fluid viscosity even with the particle volume concentration as low as 0.01%.  相似文献   

2.
The nonlinear optical properties of a series of azobenzene liquid-crystalline materials, which have different side-chain lengths in their molecular structure from one to another, were investigated using Z-scan method under picosecond pulse laser at 532 nm, 1064 nm and CW 488 nm excitation. The mechanism accounting for the process of nonlinear refraction was discussed under different laser excitations. The polymer films possess very large nonlinear refraction at all the three different laser excitations. Especially, the nonlinear refractive index becomes larger as the length of side-chain, where azobenzene group is contained, increases under pulse excitation at 1064 nm.  相似文献   

3.
4.
A concept for a picosecond molecular switch is demonstrated using a photoinduced electron transfer reaction in a covalently linked, fixed distance donor–acceptor molecule D–A linked to a perylene-3,4-dicarboximide chromophore, C. The chromophore C possesses a strong charge transfer transition in its optical spectrum. Selective excitation of C within D–A–C using 530 nm, 130 fs laser pulses produces1 * C, which undergoes singlet–singlet energy transfer to produce1 * D, which in turn transfers an electron to A. If the D–A–C system is selectively excited with 416 nm, 130 fs laser pulses to produce D + – A  –C prior to excitation of C with 530 nm, 130 fs laser pulses, a 25% lower yield of1 * C is generated. The intense local electric field produced by D + – A  causes a 15 nm electrochromic red shift of the charge transfer absorption of C. Thus, the absorption of C at 530 nm is significantly diminished by the presence of D + – A  . The need to use two laser pulses with different wavelengths to observe these effects, and the resulting picosecond time response makes it possible to consider applications of this concept in the design of molecular switches.  相似文献   

5.
We report the fabrication of the anti-reflective micro/nano-structure on absorbing layer of GaAs solar cell surface using an efficient approach based on one-step femtosecond laser irradiation. Morphology of the microstructures and reflectance of the cell irradiated are characterized with SEM and spectrometer to analyze the influence of laser processing parameters on the change of microstructures induced and the reflectance. It has been found that the rectangle grating micro/nano-structure with a period of 700 nm and width of 600 nm is obtained neatly with laser pulse energy of 30.5 μJ(pulse duration is 130 fs, center wavelength is 800 nm, scanning speed is 2.2 mm/s and spot diameter is 22 µm). Reflectance has been suppressed to 23.6% with rectangle structure from 33% of planar cell. In addition, simulation using a finite-difference-time domain(FDTD) method results show that the rectangle grating micro/nano-structure can effectively suppress the reflection within large wavelength ranges.  相似文献   

6.
We investigate the feasibility of cutting and drilling thin flex glass (TFG) substrates using a picosecond laser operating at wavelengths of 1030 nm, 515 nm and 343 nm. 50 μm and 100 μm thick AF32®Eco Thin Glass (Schott AG) sheets are used. The laser processing parameters such as the wavelength, pulse energy, pulse repetition frequency, scan speed and the number of laser passes which are necessary to perform through a cut or to drill a borehole in the TFG substrate are studied in detail. Our results show that the highest effective cutting speeds (220 mm/s for a 50 μm thick TFG substrate and 74 mm/s for a 100 μm thick TFG substrate) are obtained with the 1030 nm wavelength, whereas the 343 nm wavelength provides the best quality cuts. The 515 nm wavelength, meanwhile, can be used to provide relatively good laser cut quality with heat affected zones (HAZ) of <25 μm for 50 μm TFG and <40 μm for 100 μm TFG with cutting speeds of 100 mm/s and 28.5 mm/s, respectively. The 343 nm and 515 nm wavelengths can also be used for drilling micro-holes (with inlet diameters of ⩽75 µm) in the 100 μm TFG substrate with speeds of up to 2 holes per second (using 343 nm) and 8 holes per second (using 515 nm). Optical microscope and SEM images of the cuts and micro-holes are presented.  相似文献   

7.
High energy picosecond pulse generation from a two contact tapered 5 quantum well (QW) InGaAlAs/InP diode laser (1550 nm) is investigated using a passive Q-switching technique. Single peak pulses with pulse energies as high as 500 pJ and durations of typically hundreds of picoseconds are obtained from the device by applying reverse bias voltages in the range of 0 V to ?18 V to the absorber section of the device. It is also demonstrated that more symmetrical Q-switched pulses are obtained by reducing the duration of electrical pulses applied to the gain section of the laser. Such an improvement is attributed to the reduced time of the population inversion in the gain section due to shorter electrical pulse. We also show comparatively the dependence of optical spectra on the reverse bias voltage for diode lasers emitting at 1550 nm and 1350 nm, and demonstrate that better spectral output is obtained from AlGaInAs lasers emitting at a wavelength of 1550 nm.  相似文献   

8.
A compact erbium-doped ring-shaped fiber laser suitable for fiber-optic sensing applications has been developed. The fiber laser utilized a tunable fiber Fabry–Perot filter as the tuning element and had a moderate milli-Watt level power output over almost the whole tuning range from 1530 to 1595 nm with a power fluctuation of 0.15 dB. High repetition rate scanning of laser operation over the whole tuning range was achieved at rates of up to 200 Hz. Moreover, the performance of the ring-shaped fiber laser configured with a high-concentration erbium-doped fiber was investigated for its larger wavelength tunability of over 100 nm. Output power characteristics of this ring-shaped fiber laser were also investigated when it worked in a scanning mode. A distorted power wavelength dependence, as well as some pulsing phenomenon were observed in scanning mode.  相似文献   

9.
Novel techniques for laser beam atmospheric extinction measurements, suitable for manned and unmanned aerospace vehicle applications, are presented in this paper. Extinction measurements are essential to support the engineering development and the operational employment of a variety of aerospace electro-optical sensor systems, allowing calculation of the range performance attainable with such systems in current and likely future applications. Such applications include ranging, weaponry, Earth remote sensing and possible planetary exploration missions performed by satellites and unmanned flight vehicles. Unlike traditional LIDAR methods, the proposed techniques are based on measurements of the laser energy (intensity and spatial distribution) incident on target surfaces of known geometric and reflective characteristics, by means of infrared detectors and/or infrared cameras calibrated for radiance. Various laser sources can be employed with wavelengths from the visible to the far infrared portions of the spectrum, allowing for data correlation and extended sensitivity. Errors affecting measurements performed using the proposed methods are discussed in the paper and algorithms are proposed that allow a direct determination of the atmospheric transmittance and spatial characteristics of the laser spot. These algorithms take into account a variety of linear and non-linear propagation effects. Finally, results are presented relative to some experimental activities performed to validate the proposed techniques. Particularly, data are presented relative to both ground and flight trials performed with laser systems operating in the near infrared (NIR) at λ = 1064 nm and λ = 1550 nm. This includes ground tests performed with 10 Hz and 20 kHz PRF NIR laser systems in a large variety of atmospheric conditions, and flight trials performed with a 10 Hz airborne NIR laser system installed on a TORNADO aircraft, flying up to altitudes of 22,000 ft.  相似文献   

10.
A high-power Er,Yb double-clad ribbon fiber laser pumped by a 9-diode-bar pump module is reported. The laser yielded 102 W of continuous-wave output at 1566 nm for a launched pump power of 244 W, corresponding to a slope efficiency of ~ 44% with respect to launched pump power. Tunable operation was achieved using a simple external feedback cavity with a diffraction grating and the operating wavelength could be tuned from 1533 nm to 1567 nm. Temperature distribution in the ribbon fiber geometry and prospects of power scaling will be discussed.  相似文献   

11.
We demonstrate a 980 nm single-mode Yb-doped fiber laser with a 946 nm Q-switched Nd:YAG laser used as the pump source. The experimental arrangement exploited a 36.5 cm length of fiber and used the output from both ends of the cavity, providing a total average output power of 100 mW with a slope efficiency of 38%. In order to increase the coupling efficiency and the practicability of the fiber laser, another experimental setup with single ended output was studied, producing an average output power of 80 mW from a fiber length of 23.5 cm. The pulse duration is 10 ns at a repetition frequency of 16 kHz. The linewidth of the laser is 4 nm, ranging from 977 to 981 nm.  相似文献   

12.
A wide-band supercontinuum source generated by mode-locked pulses injected into a Highly Non-Linear Fiber (HNLF) is proposed and demonstrated. A 49 cm long Bismuth–Erbium Doped Fiber (Bi–EDF) pumped by two 1480 nm laser diodes acts as the active gain medium for a ring fiber laser, from which mode-locked pulses are obtained using the Non-Polarization Rotation (NPR) technique. The mode-locked pulses are then injected into a 100 m long HLNF with a dispersion of 0.15 ps/nm km at 1550 nm to generate a supercontinuum spectrum spanning from 1340 nm to more than 1680 nm with a pulse width of 0.08 ps and an average power of ?17 dBm. The supercontinuum spectrum is sliced using a 24 channel Arrayed Waveguide Grating (AWG) with a channel spacing of 100 GHz to obtain a fanned-out laser output covering the O-, E-, S-, C-, L- and U-bands. The lasing wavelengths obtained have an average pulse width of 9 ps with only minor fluctuations and a mode-locked repetition rate of 40 MHz, and is sufficiently stable to be used in a variety of sensing and communication applications, most notably as cost-effective sources for Fiber-to-the-Home (FTTH) networks.  相似文献   

13.
Single-mode diodes enable a particularly simple, compact and effective pumping of solid-state laser devices for many specialized applications. We investigated a single-mode, 300-mW laser diode for pumping at 935 nm a Yb:YAG laser passively mode-locked by a semiconductor saturable absorber. Relatively short pulse generation (156 fs), tunable across 1033–1059 nm has been demonstrated. An optical-to-optical efficiency of about 28% has been obtained with 320 fs long pulses. Therefore, contrarily to what previously believed, compact diode-pumped ultrafast Yb:YAG oscillators can reliably and efficiently deliver pulses in the range of ≈ 100–200 fs with few tens of mW, which are very appealing for bio-diagnostics and amplifier seeding applications.  相似文献   

14.
This study presents an external cavity diode laser (ECDL) system, utilizing a volume holographic grating (VHG) and a microfabricated silicon flexure as the VHG holder. The laser design is aimed for easy assembly, controllability, and better stability of the laser cavity. The laser frequency was stabilized to a D2 transition of rubidium at 780.247 nm, with a mode-hop-free tuning range of 16 GHz and 9.6 GHz with and without feed-forward on the diode injection current. The measured linewidth was 850 kHz in 500 s, qualified for laser cooling experiments.  相似文献   

15.
We investigate selective patterning of ultra-thin 20 nm Indium Tin Oxide (ITO) thin films on glass substrates, using 343, 515, and 1030 nm femtosecond (fs), and 1030 nm picoseconds (ps) laser pulses. An ablative removal mechanism is observed for all wavelengths at both femtosecond and picoseconds time-scales. The absorbed threshold fluence values were determined to be 12.5 mJ cm2 at 343 nm, 9.68 mJ cm2 at 515 nm, and 7.50 mJ cm2 at 1030 nm for femtosecond and 9.14 mJ cm2 at 1030 nm for picosecond laser exposure. Surface analysis of ablated craters using atomic force microscopy confirms that the selective removal of the film from the glass substrate is dependent on the applied fluence. Film removal is shown to be primarily through ultrafast lattice deformation generated by an electron blast force. The laser absorption and heating process was simulated using a two temperature model (TTM). The predicted surface temperatures confirm that film removal below 1 J cm−2 to be predominately by a non-thermal mechanism.  相似文献   

16.
A compact intra-cavity pumped low threshold continuous-wave Ho:Sc2SiO5 laser is reported. The characteristics of output wavelength tuning are investigated by use a intra-cavity briefringent (BF) filter. A wavelength tunable range of 140 nm from 2020 to 2160 nm is achieved. For the free-running mode, the laser slope efficiency is 24.8%, when the output central wavelength is 2110 nm. The laser threshold is about 820 mW of incident pump power. With the BF filter, a maximum output power of 870 mW is obtained at the incident pump power of 5 W, corresponding to a slope efficiency of 20.3%. The characteristics of output wavelength verse the crystal temperature are also investigated.  相似文献   

17.
In this study, a compact and efficient Nd:YLF laser at 1053 nm has been reported without inserting optical intracavity element to suppress the stronger line of 1047 nm. According to theoretical analysis and calculation, the thermal focal length of 1047 nm is negative while that of 1053 nm is positive in plane-parallel resonator. Hence 1053 nm laser was stable in this cavity. In our experiment, 7.5 W laser output at σ-polarized 1053 nm has been obtained with optical–optical efficiency of 38.8%. As the pulse repetition rate is 20 kHz, the pulse width is 50 ns and the peak power is calculated to be 7.5 kW.  相似文献   

18.
Output performance of a continuous-wave (CW) laser diode end-pumped passively Q-switched Tm,Ho:YLF laser is demonstrated with a Cr:ZnS crystal as the saturable absorber. We particularly investigate the influence of saturable absorber's position in the resonator when the Cr:ZnS crystal is placed close to and far from the laser beam waist. We compare the experimental results at the two different positions, and find that the laser shows unusual output characteristics when the Cr:ZnS saturable absorber is placed close to the beam waist. The pulse width and the pulse energy almost keep constant, measured about 1.25 μs and 4 μJ respectively, when the pump power is changed in the range of 1–1.9 W. Moreover, the pulse repetition frequency can be tuned between 1.3 kHz and 2.6 kHz by changing the pump power. The output wavelength of the passively Q-switched laser shifts to 2053 nm from 2067 nm in CW operation.  相似文献   

19.
We describe a continuous-wave, low-threshold Tm:YAlO3 (Tm:YAP) laser operating at 1945 nm with incident threshold pump powers in the 10–20 mW range. The z-cavity containing a 2-mm-long Tm:YAP crystal with 4 at.% Tm3+ concentration was end pumped by a continuous-wave Ti:sapphire laser at 795 nm. Tight focusing of the pump and the laser beams enabled low-threshold operation. The power performance of two different cavity configurations with 5-cm radius (R = 5 cm cavity) and 10-cm radius (R = 10 cm cavity) curved mirrors was tested. The best performance was obtained with the R = 10 cm configuration, where, the incident threshold pump power could be lowered to 10 mW after optimizing the polarization direction of the pump beam and by employing double pumping. Theoretical estimation of the threshold power was in good agreement with the experimental observations. The laser could be further tuned from 1842 to 1994 nm.  相似文献   

20.
We have established a principal possibility of changes of the light reflectivity at the wavelength of 633 nm (He–Ne laser) under influence of the external laser light. The changes are very sensitive to the wavelength of the photoinduced laser. We have chosen two types of the photoinduced lasers: UV nitrogen 7 ns laser at wavelength 371 nm heating near the absorption edge and the 10 ns 1064 nm Nd:YAG laser with wavelength 1064 nm. The power dependences of the reflectivity were studied. Possible explanation of the observed effects is presented following the conception of the nano-trapping levels. These results have been obtained from two ZnO thin films prepared from principally different deposition parameters leading to different particle features and morphologies.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号