首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 468 毫秒
1.
We apply a traveling wave model to the simulation of the amplification of laser pulses generated by Q-switched or mode-locked distributed-Bragg reflector lasers. The power amplifier monolithically integrates a ridge-waveguide section acting as pre-amplifier and a flared gain-region amplifier. The diffraction limited and spectral-narrow band pulses injected in to the pre-amplifier have durations between 10 ps and 100 ps and a peak power of typical 1 W. After the amplifier, the pulses reach a peak power of several tens of Watts preserving the spatial, spectral and temporal properties of the input pulse. We report results obtained by a numerical solution of the traveling-wave equations and compare them with experimental investigations. The peak powers obtained experimentally are in good agreement with the theoretical predictions. The performance of the power amplifier is evaluated by considering the dependence of the pulse energy as a function of different device and material parameters.  相似文献   

2.
We demonstrate graphene mode-locked nanosecond erbium-doped fiber laser in an all-fiber ring cavity. The clean and robust pulse train was generated at 27 mW pump power. Resultant central wavelength, repetition rate and pulse width was 1560 nm, 388 kHz and 6 ns, respectively. With two stage fiber amplifier, the output power was 553 mW, corresponding to single pulse energy of 1.4 μJ. In addition, the pulse-width can be varied ranging from 3 ns to 20 ns at repetition rate between 200 kHz and 1.54 MHz by changing the length of the laser cavity.  相似文献   

3.
We demonstrate the first Cr4+:YAG passively Q-switched c-cut Nd:YVO4 self-Raman laser at 1168.6 nm based on the Stokes shift of 816 cm−1. At the pump power of 4.7 W, the maximum output power of the Stokes line at 1168.6 nm is 270.5 mW, corresponding to an optical conversion efficiency of 5.8%. The pulse width, pulse repetition rate, pulse energy and peak power are 8.8 ns, 35.8 kHz, 7.6 μJ and 0.86 kW, respectively. At the pump of 5.0 W, the Stokes line at 1097.2 nm based on Raman shift of 259 cm−1 also appears.  相似文献   

4.
The stimulated emission cross-section of Nd:GGG crystal in 938 nm transition was measured by the amplifier approach. It is 2.3×10?20 cm2. A quasi-continuous-wave diode pumped, actively Q-switched Nd:GGG laser operating at 938 nm was demonstrated. Pumped by laser diodes with 900 W peak power and 300 μs pulse duration, it generated 168 mJ energy in long pulse mode. The slope efficiency was 36%. Q-switched by a KD?P Pockels cell, 41 mJ output pulse energy was obtained. The pulse duration and peak power were 120 ns and 340 kW, respectively. The optical to optical efficiency was 7%.  相似文献   

5.
In this paper, a mechanical Q-switching is used in radio frequency (RF) excited waveguide CO2 laser to obtain high pulse repetition frequency (PRF) laser. The Q-switching system includes two confocal ZnSe lenses and a high speed mechanical chopper, which is inserted into the cavity. The peak power is up to 730 W and the pulse width 200 ns at the highest PRF 20 kHz. The laser also has the advantages of compact, small-volume, and low-cost.  相似文献   

6.
We present the experimental results of a 1083 nm fiber amplifier tandem pumped by 1030 nm fiber laser. The output characteristics of the tandem pumped amplifier with cladding-pump and core-pump schemes are both investigated. The 1083 nm signal laser has not been efficiently amplified when cladding-pumped by 1030 nm laser for the weak absorption of the gain fiber. The core-pump scheme works well with the amplifier. The output properties with different gain fiber length are experimentally investigated. The maximum output power is 2.4 W with power conversion efficiency of 60%.  相似文献   

7.
Seeding high power fiber amplifier employing multi-tone fiber laser is an effective approach to suppress stimulated Brillouin scattering (SBS). In this paper, a two-stage 1064 nm high power fiber amplification system was set up. Single-, two- and three-tone fiber lasers were employed. SBS threshold powers and maximum output powers of the multi-tone cases are enhanced compared with the single-tone case. The multi-tone amplifiers also show comparable optical-to-optical efficiency to the single-tone amplifier. To demonstrate and validate coherence property of the two multi-tone fiber amplifiers, the output laser beams of the amplifiers were self-interfered in our self-made coherent beam combining system. The laser beams of the multi-tone cases showed good coherence property comparable to the single-tone case, which implied that the high power output laser light of the multi-tone fiber amplifiers could be used for coherent beam combining.  相似文献   

8.
An all-fiber-integrated linear chirped-pulse amplifier system generating microjoule pulse energies is reported. It is seeded by an all-fiber dissipative-soliton laser and incorporates a newly developed fiber stretcher, whose dispersive properties match that of the grating compressor. Pulse durations of 189 fs with energies of 2.2 μJ were achieved after compression. The average power was 9.8 W at the repetition rate of 4.5 MHz.  相似文献   

9.
We report the design of low-cost and compact short-pulse source based on a fiber-coupled Q-switched microchip laser. The combination of stimulated Raman scattering and nonlinear polarization rotation effects in the fiber associated with appropriate filtering makes it possible to tune pulse duration down to 32 ps with peak power above 3 kW. Pulse to pulse peak power fluctuation is below 4%.  相似文献   

10.
We report a wide bandwidth (Δλ=8 nm) optical pulsed MOPA (master oscillator power amplifier) source emitting 11.23 mJ pulses (1.25 MW peak power) in the wavelength centered at (λ=1064 nm). Pulse duration and repetition rate were 9 ns and from 10 Hz to 100 Hz, respectively. In order to suppress amplified spontaneous emission (ASE), multi-stage pulse pump technology is applied. And the large core diameter (90 μm) and wide bandwidth ensures the high peak power and energy output.  相似文献   

11.
Thulium doped fiber amplifier is a good candidate for S, and S+ band. This paper demonstrated a three pump pumping scheme for thulium doped fiber amplifier with 1050 nm co propagating pump and 1400 nm and 800 nm counter propagating pumps with a total pumping power 600 mW. This configuration yields up to 33 dB gain in 20 nm region from 1460 nm to 1480 nm, with noise figure <4 dB. To the knowledge of authors it is the highest gain achieved by thulium-doped amplifier in a single pass configuration with good power conversion efficiency.  相似文献   

12.
All passively mode locked erbium-doped fiber laser with a zirconium host is demonstrated. The fiber laser utilizes the Non-Linear Polarization Rotation (NPR) technique with an inexpensive fiber-based Polarization Beam Splitter (PBS) as the mode-locking element. A 2 m crystalline Zirconia–Yttria–Alumino-silicate fiber doped with erbium ions (Zr–Y–Al-EDF) acts as the gain medium and generates an Amplified Spontaneous Emission (ASE) spectrum from 1500 nm to 1650 nm. The generated mode-locked pulses have a spectrum ranging from 1548 nm to more than 1605 nm, as well as a 3-dB bandwidth of 12 nm. The mode-locked pulse train has an average output power level of 17 mW with a calculated peak power of 1.24 kW and energy per pulse of approximately 730 pJ. The spectrum also exhibits a Signal-to-Noise Ratio (SNR) of 50 dB as well as a repetition rate of 23.2 MHz. The system is very stable and shows little power fluctuation, in addition to being repeatable.  相似文献   

13.
A new method of controlling the amplified spontaneous emission (ASE) from Yb3 + ions in Er3 +/Yb3 + co-doped fiber amplifiers is presented. The 1 μm ASE is suppressed by stimulating a laser emission at 1064 nm in a fiber amplifier, due to a positive feedback for the 1 μm signal. The results are compared to a conventional amplifier setup without any ASE control. We have shown, that applying a feedback loop in an Er3 +/Yb3 + co-doped fiber amplifier allows higher power scaling and provides operation without unwanted parasitic lasing effects, increasing the stability and robustness of the amplifier.  相似文献   

14.
Erbium-ytterbium co-doped fiber amplifier with wavelength-tuned Yb-band loop resonator is presented. The amplified spontaneous emission (ASE) from Yb ions is utilized to stimulate a laser emission at several wavelengths from the 1 μm band in the 1550 nm amplifier. The wavelength of this lasing is tuned by introducing a fiber Bragg grating (FBG). The results show, that the overall efficiency of the amplifier at nominal 1550 nm wavelength can be increased by introducing a feedback loop with 1040 nm and 1050 nm FBG. This loop also protects the Er/Yb amplifier from parasitic lasing at 1 μm and allows significant output power scaling without risk of self-pulsing.  相似文献   

15.
In this paper, we report on a large-mode-area double-clad 980 nm Yb-doped photonic crystal fiber (PCF) amplifier. In the experiment, an output power of 1.21 W at 980 nm with 2.5 nm bandwidth has been yielded when the PCF length was 40 cm. Through frequency doubling the 980 nm amplified laser with a BIBO crystal, an output power of 51 mW at 490 nm has been generated.  相似文献   

16.
We demonstrate a 980 nm single-mode Yb-doped fiber laser with a 946 nm Q-switched Nd:YAG laser used as the pump source. The experimental arrangement exploited a 36.5 cm length of fiber and used the output from both ends of the cavity, providing a total average output power of 100 mW with a slope efficiency of 38%. In order to increase the coupling efficiency and the practicability of the fiber laser, another experimental setup with single ended output was studied, producing an average output power of 80 mW from a fiber length of 23.5 cm. The pulse duration is 10 ns at a repetition frequency of 16 kHz. The linewidth of the laser is 4 nm, ranging from 977 to 981 nm.  相似文献   

17.
An efficient erbium/ytterbium co-doped fiber amplifier (EYDFA) is demonstrated by using a dual-stage partial double pass structure with a band pass filter (BPF). The amplifier achieves the maximum small signal gain of 56 dB and the corresponding noise figure of 4.66 dB at 1536 nm with an input signal power and total pump power of ?50 dBm and 140 mW, respectively. Compared with a conventional single-stage amplifier, the maximum gain enhancement of 16.99 dB is obtained at 1544 nm with the corresponding noise figure is improved by 2 dB. The proposed amplifier structure only uses a single pump source with a partial double pass scheme to provide a high gain and dual-stage structure to provide the low noise figure.  相似文献   

18.
A passively Q-switched a-cut Nd:GdVO4 self-Raman solid-state laser with Cr:YAG saturable absorber was firstly demonstrated. The first Stokes at 1173 nm was successfully obtained. At the maximum incident pump power, the pulse width was about 1.8 ns and the repetition rate was 27.5 kHz. 586.5 nm yellow laser output was also realized by use of an LBO frequency doubling crystal.  相似文献   

19.
A dual-stage L-band erbium-doped fiber amplifier with a flat gain bandwidth over 36 nm is demonstrated using pump distribution technique. The pump power was distributed to two stages depending on the splitting ratio and the length of erbium-doped fiber that was used for this configuration. Both parameters are the key components for achieving a substantially flat gain response throughout the L-band region ranging from 1570 nm to 1605 nm. Although the input signal power was varied from ? 30 dBm to 0 dBm, gain of 17 dB with slight variations of less than 1.5 dB and a noise figure of less than 6.7 dB were achieved. All the results obtained show better performances when comparison was made with the conventional single-stage L-band optical amplifier.  相似文献   

20.
Filter-free ultra-wideband (UWB) doublet pulse generation is experimentally demonstrated in the optical domain based on cross-gain modulation (XGM) in semiconductor optical amplifier (SOA) and UWB-over-fiber technology is implemented by exploiting dispersion-induced pulse broadening effect in single-mode fiber (SMF). In our proposed system, the SOA generates a polarity-inversed Gaussian pulse train with respect to the injected one through the XGM. After a piece of SMF, the bandwidth of polarity-reversed Gaussian pulse broadens due to the induced dispersion. After the combination of the two light waves with a suitable time delay between them, UWB pulse is obtained. The key parameters for UWB pulse, including central frequency, 10 dB bandwidth, as well as fractional bandwidth are experimentally obtained with 8 GHz, 9.9 GHz and 123% respectively. The generated UWB doublet pulse conforms with the UWB definition of Federal Communications Commission (FCC).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号