首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We demonstrate a 980 nm single-mode Yb-doped fiber laser with a 946 nm Q-switched Nd:YAG laser used as the pump source. The experimental arrangement exploited a 36.5 cm length of fiber and used the output from both ends of the cavity, providing a total average output power of 100 mW with a slope efficiency of 38%. In order to increase the coupling efficiency and the practicability of the fiber laser, another experimental setup with single ended output was studied, producing an average output power of 80 mW from a fiber length of 23.5 cm. The pulse duration is 10 ns at a repetition frequency of 16 kHz. The linewidth of the laser is 4 nm, ranging from 977 to 981 nm.  相似文献   

2.
We demonstrate 330 MHz repetition rate operation in a ring cavity Yb:fiber laser with an innovative wavelength-division-multiplexing collimator to raise the repetition rate. The spectral bandwidth of the pulse is 30 nm and the dechirped pulse width is 48 fs. The output power is 70 mW with 600 mW, 975 nm pump laser diode.  相似文献   

3.
A passively Q-switched a-cut Nd:GdVO4 self-Raman solid-state laser with Cr:YAG saturable absorber was firstly demonstrated. The first Stokes at 1173 nm was successfully obtained. At the maximum incident pump power, the pulse width was about 1.8 ns and the repetition rate was 27.5 kHz. 586.5 nm yellow laser output was also realized by use of an LBO frequency doubling crystal.  相似文献   

4.
A dual-wavelength ytterbium doped fiber laser with a narrowest spacing of 0.53 nm and widest spacing of 12.2 nm at 1064 nm is presented in this paper. An arrayed waveguide grating (AWG) together with an optical channel selector (OCS) have also been incorporated in the proposed setup that works as a switchable mechanism giving 23 different wavelength tunings. Producing an average output power of ?8 dB m and side mode suppression ratio (SMSR) of 59.65 dB, this dual-wavelength fiber laser is quite stable with an output power variance as low as 0.47 dB giving it an advantage due to its switching ability and stable dual-wavelength output powers.  相似文献   

5.
The stimulated emission cross-section of Nd:GGG crystal in 938 nm transition was measured by the amplifier approach. It is 2.3×10?20 cm2. A quasi-continuous-wave diode pumped, actively Q-switched Nd:GGG laser operating at 938 nm was demonstrated. Pumped by laser diodes with 900 W peak power and 300 μs pulse duration, it generated 168 mJ energy in long pulse mode. The slope efficiency was 36%. Q-switched by a KD?P Pockels cell, 41 mJ output pulse energy was obtained. The pulse duration and peak power were 120 ns and 340 kW, respectively. The optical to optical efficiency was 7%.  相似文献   

6.
In this study, a compact and efficient Nd:YLF laser at 1053 nm has been reported without inserting optical intracavity element to suppress the stronger line of 1047 nm. According to theoretical analysis and calculation, the thermal focal length of 1047 nm is negative while that of 1053 nm is positive in plane-parallel resonator. Hence 1053 nm laser was stable in this cavity. In our experiment, 7.5 W laser output at σ-polarized 1053 nm has been obtained with optical–optical efficiency of 38.8%. As the pulse repetition rate is 20 kHz, the pulse width is 50 ns and the peak power is calculated to be 7.5 kW.  相似文献   

7.
We present a high-power 1.53 μm laser based on intracavity KTA-OPO driven by diode-end-pumped acousto-optical Q-switched YVO4/Nd:YVO4 composite. The composite crystal was utilized for reducing the thermal effect, and the mode mismatch compensating OPO cavity was designed for efficient OPO conversion. The output power of eye-safe laser at 1535 nm was up to 4.4 W with the pump power of 27 W, corresponding to a diode-to-signal conversion efficiency of 16.3%. To our knowledge, this is the highest output power in diode-end-pumped circumstances. In the experiment, the strong yellow light generated by Raman conversion and frequency doubling in the KTA crystal was observed.  相似文献   

8.
In this paper, we report on a large-mode-area double-clad 980 nm Yb-doped photonic crystal fiber (PCF) amplifier. In the experiment, an output power of 1.21 W at 980 nm with 2.5 nm bandwidth has been yielded when the PCF length was 40 cm. Through frequency doubling the 980 nm amplified laser with a BIBO crystal, an output power of 51 mW at 490 nm has been generated.  相似文献   

9.
A 1.94 μm Tm-doped fiber laser pumped tunable single-longitudinal-mode Ho:YLF laser with double etalons was reported for the first time. The maximum single-longitudinal-mode output power of 345 mW at 2051.6 nm was achieved at the absorbed pump power of 11.9 W, corresponding to a slope efficiency of 5.5% and an optical conversion efficiency of 2.9%. By regulating the angle of the F–P etalons, the output wavelength of the laser can be tuned from 2051.6 nm to 2063.3 nm. The single-longitude-mode Ho:YLF laser operating at 2 μm can be used as the seed laser source of coherent Doppler lidar, differential absorption lidar and so on.  相似文献   

10.
We present a 2.09 μm single-longitudinal-mode sandwich-type YAG/Ho:YAG/YAG ceramic laser pumped by a Tm-doped fiber laser for the first time. A pair of F-P etalons was used to achieve tunable single-longitudinal-mode operation. The maximum single-longitudinal-mode output power of 530 mW at 2091.4 nm was obtained with an absorbed pump power of 8.06 W, corresponding to an optical conversion efficiency of 6.6% and a slope efficiency of 12.7%. Wavelength tunable was achieved by tuning the angle of etalons and the wavelength could be tuned from 2091.1 nm to 2092.1 nm, corresponding to a tuning frequency of 68 GHz. The M2 factor was measured to be 1.23.  相似文献   

11.
We demonstrate a diode-pumped Nd:YAG ceramic laser with emission at 946 nm that is passively Q-switched by single-crystal Cr4+:YAG saturable absorber. An average output power of 1.7 W is measured under 18.4 W of incident power using an output mirror with transmission T=4%. The corresponding optical-to-optical efficiency is 9.2%. The laser runs at a pulse repetition rate of 120 kHz and delivers pulses with energy of 14 μJ and duration of 80 ns, which corresponds to a peak power of 175 W.  相似文献   

12.
A high-power Er,Yb double-clad ribbon fiber laser pumped by a 9-diode-bar pump module is reported. The laser yielded 102 W of continuous-wave output at 1566 nm for a launched pump power of 244 W, corresponding to a slope efficiency of ~ 44% with respect to launched pump power. Tunable operation was achieved using a simple external feedback cavity with a diffraction grating and the operating wavelength could be tuned from 1533 nm to 1567 nm. Temperature distribution in the ribbon fiber geometry and prospects of power scaling will be discussed.  相似文献   

13.
A compact intra-cavity pumped low threshold continuous-wave Ho:Sc2SiO5 laser is reported. The characteristics of output wavelength tuning are investigated by use a intra-cavity briefringent (BF) filter. A wavelength tunable range of 140 nm from 2020 to 2160 nm is achieved. For the free-running mode, the laser slope efficiency is 24.8%, when the output central wavelength is 2110 nm. The laser threshold is about 820 mW of incident pump power. With the BF filter, a maximum output power of 870 mW is obtained at the incident pump power of 5 W, corresponding to a slope efficiency of 20.3%. The characteristics of output wavelength verse the crystal temperature are also investigated.  相似文献   

14.
We report a tunable, narrow linewidth and high beam quality continuous-wave (CW) yellow laser system at 589 nm. The system is an all solid-state design employing single-pass sum–frequency generation in a KTP crystal by mixing the 1064 nm with 1319 nm lines of two side-pumped Nd:YAG enforcing unidirectional ring lasers. With this method, a CW yellow laser at 589.159 nm with an output power of 0.8 W, a linewidth less than 1.5 GHz and a beam quality M2 = 1.29 is obtained. The wavelength of the laser also can be precisely tuned from 589.112 to 589.181 nm in step-length of about 0.22 pm.  相似文献   

15.
High-peak-power, short-pulse-width diode pumped 946 nm Nd:YAG laser in passively Q-switching operation with Cr4+:YAG is reported. The highest average output power reaches 3.4 W using the Cr4+:YAG with initial transmissivity T0=95%. When the T0=90% Cr4+:YAG is employed, the maximum peak power of 31.4 kW with a pulse width of 8.3 ns at 946 nm is generated.  相似文献   

16.
We report a unidirectional single-longitudinal-mode Ho:YLF ring laser. An acousto-optic modulator and two half-wave plates were used to enforce the Ho:YLF ring laser in a unidirectional operation. The single-longitudinal-mode output power could reach 3.73 W successfully when the incident pump power was 16.4 W. The corresponding slope efficiency was 27.1%. The wavelength of the single-longitudinal-mode Ho:YLF ring laser was 2063.8 nm. The M2 factor was 1.12. The results illustrated that the single-longitudinal-mode output power could be further enhanced by increasing the radio frequency power of the acousto-optic modulator.  相似文献   

17.
We demonstrate the first Cr4+:YAG passively Q-switched c-cut Nd:YVO4 self-Raman laser at 1168.6 nm based on the Stokes shift of 816 cm−1. At the pump power of 4.7 W, the maximum output power of the Stokes line at 1168.6 nm is 270.5 mW, corresponding to an optical conversion efficiency of 5.8%. The pulse width, pulse repetition rate, pulse energy and peak power are 8.8 ns, 35.8 kHz, 7.6 μJ and 0.86 kW, respectively. At the pump of 5.0 W, the Stokes line at 1097.2 nm based on Raman shift of 259 cm−1 also appears.  相似文献   

18.
An LD end-pumped Nd:YAG/SrWO4 continuous-wave 560 nm laser is presented based on intracavity sum-frequency mixing of the fundamental and first-Strokes light. The maximum output power of 330 mW at 559.6 nm was obtained for the diode pump power of 13.7 W and the conversion efficiency was about 2.5%. The intense blue emission was also observed in the SrWO4 crystal when the Raman laser was operating above threshold. This blue emission is centered at 473 nm, which also happened to YVO4.  相似文献   

19.
A compact erbium-doped ring-shaped fiber laser suitable for fiber-optic sensing applications has been developed. The fiber laser utilized a tunable fiber Fabry–Perot filter as the tuning element and had a moderate milli-Watt level power output over almost the whole tuning range from 1530 to 1595 nm with a power fluctuation of 0.15 dB. High repetition rate scanning of laser operation over the whole tuning range was achieved at rates of up to 200 Hz. Moreover, the performance of the ring-shaped fiber laser configured with a high-concentration erbium-doped fiber was investigated for its larger wavelength tunability of over 100 nm. Output power characteristics of this ring-shaped fiber laser were also investigated when it worked in a scanning mode. A distorted power wavelength dependence, as well as some pulsing phenomenon were observed in scanning mode.  相似文献   

20.
A compact short-cavity fiber laser configured with Er3+/Yb3+ highly co-doped phosphate glass fiber with stable linear polarization and single frequency output is proposed and investigated experimentally. The fiber laser is composed of a high-reflectivity fiber Bragg grating (HRFBG) and a polarization-maintaining fiber Bragg grating (PMFBG) with the matched wavelengths at 1540.3 nm, which aims at one of the center wavelengths of the atmospheric transmission windows and may be used as the local oscillator (LO) of the coherent Doppler lidar (CDL). The output power of the laser reaches more than 114-mW, the signal-to-noise ratio is larger than 70 dB and the laser linewidth is about 4.1-kHz. Moreover, the linear polarization with 40.5 dB extinction ratio, the power fluctuation of less than ± 0.25% and the frequency fluctuation of less than ± 80 MHz are also obtained. Compared with the DFB fiber laser, the proposed fiber laser is more suitable for the CDL applications.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号