首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
We successfully obtain high-average-power high-stability Q-switched green laser based on diode-side-pumped composite ceramic Nd:YAG in a straight plano-concave cavity. The temperature distribution in composite ceramic Nd:YAG crystal is numerically analyzed and compared with that of conventional Nd:YAG crystal. By use of a composite ceramic Nd:YAG rod and a type-II high gray track resistance KTP (HGTR-KTP) crystal, a green laser with an average output power of 165 W is obtained at a repetition rate of 25 kHz, with a diode-to-green optical conversion of 14.68%, and a pulse width of 162 ns. To the best of our knowledge, both the output power and optical-to-optical efficiency are the highest values for green laser systems with intracavity frequency doubling of this novel composite ceramic Nd:YAG laser to date. The power fluctuation at around 160 W is lower than 0.3% in 2.5 hours.  相似文献   

3.
We demonstrate the generation of TEM00 mode yellow light in critically type II phase-matched KTiOPO4 (KTP) with intracavity frequency doubling of a diode-pumped Nd:YAG laser at room temperature. After a 150 μm thick etalon have been inserted into the cavity, the stability and beam quality of the second harmonic generation (SHG) is enhanced. A continuous wave (CW) TEM00 mode output power of 1.67 W at 556 nm is obtained at a pump level of 16 W. The total optical to optical conversion efficiency is about 10.44%. To the best of our knowledge, this is the first Watt-level yellow light generation by frequency doubling of Nd:YAG laser.  相似文献   

4.
李健  崔伟  乔焱  董浩然  毕学进 《光学技术》2011,37(5):597-600
考虑晶体热衍射损耗以及在倍频过程中的非线性腔内损耗的影响,给出了LD泵浦Cr:YAG被动调Q556nm激光的耦合速率方程,数值求解了该方程组获得输出激光的重复频率,平均输出功率,峰值功率随泵浦功率的变化特性,理论值与实验结果符合较好.  相似文献   

5.
A high-efficiency diode-pumped acousto-optically (AO) Q-switched ceramic Nd:YAG (cNd:YAG) laser operating at 1123 nm is demonstrated for the first time. With an incident pump power of 17.11 W and a pulse repetition rate of 30 kHz, an average output power of 5.86 W is obtained. The optical-to-optical conversion efficiency is 34.2% and the slope efficiency is 39.1%.  相似文献   

6.
Chen YF  Su KW  Zhang HJ  Wang JY  Jiang MH 《Optics letters》2005,30(24):3335-3337
Barium tungstate (BaWO4) is employed to achieve efficient stimulated Raman scattering conversion in a compact diode-pumped actively Q-switched Nd:YAG laser. With an incident pump power of 9.2 W, 1.56 W of 1181 nm first-Stokes average output power was generated at a pulse repetition rate of 20 kHz, corresponding to an optical-to-optical conversion efficiency of 16.9%.  相似文献   

7.
We demonstrate a 980 nm single-mode Yb-doped fiber laser with a 946 nm Q-switched Nd:YAG laser used as the pump source. The experimental arrangement exploited a 36.5 cm length of fiber and used the output from both ends of the cavity, providing a total average output power of 100 mW with a slope efficiency of 38%. In order to increase the coupling efficiency and the practicability of the fiber laser, another experimental setup with single ended output was studied, producing an average output power of 80 mW from a fiber length of 23.5 cm. The pulse duration is 10 ns at a repetition frequency of 16 kHz. The linewidth of the laser is 4 nm, ranging from 977 to 981 nm.  相似文献   

8.
Continuous-wave green laser with a maximum power of 34 W has been obtained by intracavity frequency doubling with KTP in diode-side-pumped Nd:YAG. The Nd:YAG/KTP green laser has a simple three- mirror V-fold cavity structure. The optical-to-optical conversion efficiency is 9.5%. The instability of the laser is measured when the output powers are near 16, 21, 30, and 34 W after the beam is filtered. At the maximum output power, the M^2 factor is measured to be 8.  相似文献   

9.
An active Q-switched diode-end-pumped Nd:YAG laser is reported with 2.9 W output power on the 4F3/2 → 4I9/2 transitions at a pump power of 24 W. With intracavity frequency doubling using a 20-mm-long LBO, a maximum blue output power of 2.25 W is achieved at a repetition rate of 23 kHz. The conversion efficiency from the corresponding Q-switched fundamental output to blue output is 96%. The peak power of the Q-switched blue pulse is up to 610 W with 160 ns pulse width. The fluctuation of the blue output power is less than 4.0% at the maximum output power.  相似文献   

10.
The optimization theory for intracavity frequency-doubled Q-switched lasers is discussed. Nonlinear loss effects caused by the frequency doubler were introduced into the rate equations. The harmonic pulse characteristics such as peak power, pulse energy, pulsewidth were studied. Lagrange multiplier technique was adopted to maximize the peak power of the second-harmonic pulse for a given pumping level. It was found that the optimal frequency-doubling factor is constant and equals 1. Design curves for the laser characteristics parameter were established. The curves and expressions presented help in designing an optimal Q-switched intracavity frequency-doubled miniature laser and predict the pulse characteristics.  相似文献   

11.
To obtain high power and high beam quality second harmonic generation, a Q-switched system has been demonstrated by intracavity frequency doubling of two diode-side-pumped Nd:YAG modules with double AO-modulators in an astigmatism compensated cavity geometry. A maximum average frequency doubled power of 185 W is obtained when the pumping power is 600 W for each module. The corresponding optical-to-optical conversion efficiency is 15.4% and the pulse width is 180 ns at a repetition rate of 10 kHz. An instability of 2.5% was measured over a period of 2 h and the beam quality factors were measured to be , the maximum output power.  相似文献   

12.
We present for the first time a Nd:YAG laser emitting at 1064 nm intracavity pumped by a 946 nm diode-pumped Nd:YAG laser. A 885 nm laser diode is used to pump the first Nd:YAG crystal emitting at 946 nm, and the second Nd:YAG laser emitting at 1064 nm intracavity pumped at 946 nm. We achieved an output power of 7.97 W at 1064 nm for an absorbed pump power at 946 nm of 9.55 W, corresponding to an optical efficiency of 83.4%. The beam quality M2 quality factor is about 1.1 at the maximum output power.  相似文献   

13.
An efficient compact diode-pumped acousto-optic actively Q-switched Nd:YAG ceramic laser operating at 1319 nm was demonstrated. At an incident pump power of 23.7 W, an average output power of 4.8 W at a pulse repetition frequency of 30 kHz was obtained. The corresponding optical-to-optical conversion efficiency was 20.3%. A maximum single pulse energy of 316 μJ with a pulse duration of 78.5 ns was obtained at an incident pump power of 19.4 W and a pulse repetition frequency of 10 kHz.  相似文献   

14.
A new laser transition at 1112 nm was obtained after analyzing the parameters of the main laser transitions in Nd:YAG and calculating the transmission loss of the cavity at 1064, 1319, and 946 nm. The maximum output power of the fundamental wavelength was 610 mW, the fundamental wavelength light-to-light conversion efficiency was 38.1%, the maximum output at 556 nm was 109 mW intra-cavity frequency doubled by LBO, the SHG conversion efficiency was 17.8%, and the overall light-to-light efficiency was 6.8% for the pump power of 1.6 W.  相似文献   

15.
We demonstrate a compact efficient diode-pumped acousto-optically Q-switched intracavity-frequency-tripled Nd:YVO4 blue laser. The optimum polarization state is experimentally investigated to optimize the output performance. Greater than 280 mW of 447-nm average power at a repetition rate of 25 kHz was generated with a 15-W diode pump power. At 25 kHz, the pulse width is shorter than 15 ns and the peak power is higher than 800 W.  相似文献   

16.
Liu  Xuchao  Zhang  Fengfeng  Wang  Zhimin  Zong  Nan  Bo  Yong  Peng  Qinjun  Cui  Dafu  Xu  Zuyan 《Optical Review》2020,27(6):493-497
Optical Review - We report on a high-power continuous-wave (CW) intracavity frequency-doubled laser at 670.8 nm, which is produced by the second-harmonic generation of a diode side-pumped...  相似文献   

17.
We report for the first time a yellow-green laser at 555 nm generation by intracavity frequency doubling of a continuous wave (CW) laser operation of a 1110 nm Nd-doped yttrium gallium garnet (Nd:YGG) laser under in-band diode pumping at 808 nm. An LBO crystal, cut for critical type I phase matching is used for second harmonic generation of the laser. At an incident pump power of 18.5 W, as high as 2.31 W of CW output power at 555 nm is achieved. The optical-to-optical conversion efficiency is up to 12.4%, and the fluctuation of the yellow-green output power was better than 2.8% in the given 4 h.  相似文献   

18.
Xiaodong Yang  Yong Bo  Aicong Geng 《Optik》2011,122(6):467-470
A diode laser-pumped acoustic-optic Q-switched Nd:YAG master-oscillator power amplifier laser is presented. The laser is quasi continuously pumped at 1.1 kHz with a pulse width of 172 μs, and the ultrasonic frequency of the AO Q-switcher is set at a higher value (53 kHz). The master oscillator is designed as a thermally near-unstable-resonator, which presents an average output power of 48 W with a beam quality value of M2 = 1.41 and a Q-switching pulse duration of 121 ns. The maximum average power of the MOPA system is 654 W, and the beam quality is M2 = 6.  相似文献   

19.
A LD-pumped, LBO intracavity frequency doubled and Cr:YAG passively Q-switched Nd:YAG green laser was reported in this letter. With 600 mW incident pump laser, Q-switched green laser with average power of 27 mW, pulse width of 15.2 ns, repetition rate of 16.4 kHz and peak power of 108.1 W was obtained.  相似文献   

20.
Single-mode high-peak-power passively Q-switched diode-pumped Nd:YAG laser   总被引:1,自引:0,他引:1  
Afzal RS  Yu AW  Zayhowski JJ  Fan TY 《Optics letters》1997,22(17):1314-1316
We have demonstrated an efficient, compact, passively Q-switched single-mode diode-pumped Nd:YAG laser that uses Cr(4+):YAG as a saturable absorber. Linear- and ring-cavity configurations were demonstrated. Pulse energies and widths were, respectively, 1.5mJ and 3.9ns for the linear cavity and 2.1mJ and 12ns for the ring cavity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号