首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 609 毫秒
1.
We propose a long-reach wavelength-division-multiplexed (WDM) passive optical network (PON) to provide conventional point-to-point (P2P) data and downstream broadcasting service simultaneously by superimposing, for each WDM channel, the differential-phase-shift-keying (DPSK) broadcasting signal with the subcarrier multiplexing (SCM) modulated downstream P2P signal, at the optical line terminal (OLT). In the optical network units (ONUs), by re-modulating part of the downstream signal with a reflective semiconductor optical amplifier (RSOA), we realize color-less ONUs for upstream data transmission. The proposed scheme is numerically verified with a 5 Gb/s downstream P2P signal and broadcasting services, as well as 2.5 Gb/s upstream data through a 60 km bidirectional fiber link. In particular, the influence of the downstream lightwave's optical carrier–subcarrier ratio (OCSR) on the system performance is also investigated.  相似文献   

2.
Asymmetric clipping optical orthogonal frequency division multiplexing (ACO-OFDM) based time division multiple access (TDMA) Passive Optical Network (PON) upstream transmission architecture is proposed. The system features low power consumption, colorless, and cost effectiveness. Performance and validity of 10 Gb/s upstream transmission are studied and confirmed by simulation. Performance degradation due to interference from rogue Optical Network Unit (ONU) is also studied.  相似文献   

3.
In this study, we propose and experimentally demonstrate a simple self-protection architecture for WDM passive optical network (PON) by adding a novel 2 × 2 optical switch design in each optical networking unit (ONU). Two adjacent ONUs are interconnected into a group. By using the proposed protection architecture, the affected traffic can be restored immediately against fiber fault in the feeder and distributed fibers. Moreover, the performance of proposed self-protection WDM-PON is also discussed and analyzed.  相似文献   

4.
In this paper, a bidirectional Fiber To The Home (FTTH) is proposed where WDM transmitter is used as a seeding source with wavelength of 1550 nm. The system utilizes a Travelling wave Semiconductor Optical Amplifier (TSOA) with injection current 0.15A. 50 km range FTTH architecture is demonstrated for both downstream and upstream channels. We investigated the impact of different data rates on upstream and downstream data. The BER results show that the performance of our scheme is good for 10 Gbps system for downstream transmission as it accommodates 64 ONUs. From simulation results show the BER of 9.95e-009 is reported at 15 Gbps but only in case of 32 ONUs. Similarly, in case of upstream transmission, Q-Factor of 15.04 dB is reported for 32 ONUs. So this scheme is a practical solution to meet the data rate of the optical links simultaneously in tomorrow's PON access networks.  相似文献   

5.
A novel long-reach, hybrid wavelength-division multiplexing (WDM) and time-division multiplexing (TDM) passive optical network (PON) architecture which supports local area network (LAN) emulation among customers is proposed. Orthogonal frequency division multiplexing access (OFDMA) technology is used in optical network units (ONUs) to transmit the LAN data. The optical LAN data from an ONU is converted into the electrical signal and combined with TDM downstream access data in the extended box for delivery to other ONUs. This scheme has many advantages on LAN emulation, such as dynamic allocation of LAN bandwidth, no bandwidth cost of TDM business, supporting multiple concurrent LAN services and so on. Simulations are performed to verify the scheme. Tolerance of dispersion and factors that influence the performance of various independent services are all investigated and analyzed.  相似文献   

6.
Yanan Cao  Chaoqin Gan 《Optik》2012,123(2):176-180
A novel architecture of hybrid WDM/OCDMA-PON employing two wavelength bands for two different groups of ONUs is proposed. OCDMA is overlayed on WDM channel in a single network and the total capacity of WDM/OCDMA-PON becomes 2m times larger than the traditional WDM-PON. Meanwhile, a C + L band ultra-broadband light source is used for upstream transmission, which can be seen as a cost-effective manner in FTTH. In simulation system, 1.25 Gb/s downstream and upstream data based on the architecture are transmitted with good performance. And the crosstalk penalties from adjacent code channels (at the same wavelength) are found to be little in upstream and downstream transmissions.  相似文献   

7.
According to the present passive optical network (PON) standard, the fiber transmission lengths are from 500 m to 20 km between the optical line terminal (OLT) and different optical network units (ONUs). It will result in difference power losses (ΔPloss) from 4 to 5 dB. Hence, we propose to adjust adaptively the output optical power of the upstream laser diode (LD) depending on the different fiber lengths. With the different fiber transmission lengths, we can properly adjust the bias current and modulation index of upstream LD for energy-saving. We characterize and analyze experimentally the relationship of output optical power and modulation amplitude Vamp under different fiber transmissions in PON access. Moreover, due to the adaptive power control of upstream signal, the optical upstream equalization also can be retrieved with power variation of 1.1 dB in this experiment.  相似文献   

8.
This paper proposes a new cross-protection colorless dual-WDM-PON architecture. The proposed protection scheme can provide 1 + 1 downstream protection and 1:1 upstream protection against both feeder fiber and distribution fiber failures by using the fiber links and AWGs of the neighboring WDM-PON. Wavelength is reused for the down- and up-stream transmissions in dual-WDM-PONs where gain-saturated reflective semi-conductor optical amplifiers (RSOAs) are employed as colorless transmitters in ONUs. The number of extra protection fibers is minimized and wavelength is much more efficiently utilized compared with other protection schemes. The feasibility and operation of the proposed dual-WDM-PON architecture are experimentally verified with 1.25 Gb/s for upstream and 2.5 Gb/s for downstream over 20 km single mode fiber transmission in both working and protection modes.  相似文献   

9.
In this paper, a spectral efficient hybrid wireless optical broadband access network (WOBAN) is proposed and demonstrated based on the transmission of wireless multi-input multi-output orthogonal frequency division multiplexing (MIMO OFDM) signals over wavelength division multiplexing passive optical network (WDM PON). By using radio over fiber (ROF) techniques, the optical fiber is well adapted to propagate multiple wireless services having different carrier frequencies. It is a known fact that multiple wireless signals having the same carrier frequency cannot propagate over a single optical fiber at the same time, such as MIMO signals feeding multiple antennas in fiber wireless (FiWi) system. A novel optical single-sideband frequency translation technique is designed and simulated to solve this problem. This technique allows four pairs of wireless MIMO OFDM signals with the same carrier frequency for each pair to be transmitted over a single optical fiber by using one optical source per wavelength. The crosstalk between the different MIMO channels with the same frequency is eliminated, since each channel is upconverted on specified wavelength with enough channel spacing between them. Also the maximum crosstalk level between the different MIMO channels with different frequencies is very low around ?76 dB. The physical layer performance of the proposed WOBAN is analyzed in terms of the bit error rate (BER), error vector magnitude (EVM), and signal-to-noise ratio (SNR). The proposed WOBAN achieves 7.68 Gb/s data rate for 20 km for the optical back-end and 240 Mb/s for the outdoor wireless front-end.  相似文献   

10.
Signal remodulation is considered to lower the cost of future WDM-PON by wavelength reuse. We propose and demonstrate a signal remodulation scheme using PolSK modulation in both downstream and upstream signals for “colorless” WDM-PON. High extinction-ratio can be achieved in both downstream and remodulated upstream signals; hence power sacrifice of using residual optical power in downstream signal for the upstream remodulation is eliminated. Split-ratio analysis is performed for the hybrid WDM-TDM architecture. Results show that the proposed scheme could be a potential candidate for next generation wavelength reuse WDM-TDM PON.  相似文献   

11.
We have demonstrated a bidirectional reflective semiconductor optical amplifier (RSOA) based on wavelength division multiplexing ROF network utilizing an offset quadrature differential phase shift keying (OQPSK) signal for down-link and an on-off keying (OOK) signal re-modulated for up-link. A 50 km range colorless WDM-ROF without dispersion compensation was demonstrated for both 1 Gbit/s downstream and upstream signals. The BER performance of our scheme shows that our scheme is a practical solution to meet the data rate and cost-efficient of the optical links simultaneously in tomorrow's ROF access networks.  相似文献   

12.
Sanjeev Dewra  R.S. Kaler 《Optik》2013,124(4):347-351
This paper presents an investigation on the performance of an optical network in terms of crosstalk based on optical add drop multiplexers with Mach–Zehnder interferometer (MZI), MZI-semiconductor optical amplifier (SOA) and MZI-fiber Braggs gratings (FBG) techniques obtained at 8 × 10 Gbps with 0.1 nm channel spacing wavelength division multiplexing (WDM) transmission with optical add drop multiplexer (OADM) placed at the 20 km point of a 40 km link. It is found that the signal can be transmitted with least BER and better Q-factor with MZI-FBG based OADM and the worst case is found with the MZI-SOA based OADM.  相似文献   

13.
In this investigation, we propose and investigate the simple self-injection locked Fabry-Perot laser diodes (FP-LDs) in optical line terminal (OLT); and wavelength-tunable optical network unit (ONU) using reflective optical semiconductor amplifier (RSOA) and FP-LD laser for downstream and upstream traffic in long reach (LR) wavelength division multiplexed-passive optical network (WDM-PON) respectively. The output performance of the proposed two laser sources in terms of power and side-mode suppression ratio (SMSR) has been discussed. Here, for the downstream traffic, the proposed optical transmitter can be directly modulated at 2.5 Gb/s on-off keying (OOK) format with nearly 0.4 dB power penalty at bit error rate (BER) of 10−9 through 75 km single-mode fiber (SMF) transmission. Moreover, the proposed upstream transmitter can be directly modulated at 1.25 and 2.5 Gb/s with nearly 0.5 and 1.1 dB power penalty, respectively, at the BER of 10−9.  相似文献   

14.
白光富  江阳  胡林  田晶  訾月姣 《物理学报》2017,66(19):194204-194204
基于正交频分复用技术的无源光网络中,光网络单元为了获得其所属小部分下行数据,需高采样率模数转换器将所有频宽的信号恢复才能分出其所需要数据.同时正交频分信号峰均比很高,传输中容易引起非线性效应.为此,本文提出一种基于低采样模数转换器的延时复用频分多址无源光网络.在光线路终端将数据序列交错排序并在时域映射为正交幅度调制信号;再通过离散傅里叶变换扩频技术,将信号转换为频域信号并映射到子载波上.通过预先发送和回传训练信号,估测包括延时采样和低采样接收在内的信道频响;再将频域信号利用估测信息在光线路终端做预处理,从而使信号传输中的失真得到有效预补偿.本文实验演示了含有多个光网络单元的系统,对于含有M个光网络单元的无源光网络,模数转换器的采样率可以降低到1/M Nyquist采样率,实验中模数转换器的采样率可以降低到1/32 Nyquist采样率;由于下行信号通过光线路终端预处理实现失真预补偿,光网络单元接收到的信号不需要均衡,不需要傅里叶变换和傅里叶逆变换,避免了与之对应的相关计算量,降低了光网络单元的计算复杂度;由于使用了扩频技术,信号波形具有更低的峰均比,从而降低了非线性对信号的影响,增加了功率预算.此外,随着光网络单元的增加,信号的误码率几乎没有增加,光网络单元个数增加到32时,向前纠错极限为10~(-3)的功率代价小于0.5 dB;系统对光网络单元采样时刻偏离具有一定容限;25 km光纤传输的功率代价大约0.5 dB.理论和实验均证明本方案能够简化光网络单元,降低无源光网络的成本;与传统的无源光网络相比具有明显优势.  相似文献   

15.
In this paper, we analyze the survivability of wavelength division multiplexed (WDM) passive optical network (PON). We propose and experimentally demonstrate a novel survivable WDM-PON architecture with self-protection and in-service fault localization capabilities. Two WDM-PONs are combined together and multiple sub-ring architecture is formed. Protection switching is achieved automatically at optical network units (ONUs) when failure occurs. Fiber loss, fiber fault localization and automatic protection switching in each ONU are real-time monitored in central office (CO) without interrupting customer service. No signaling for failure notice or protection switching is required for either CO or ONUs. Extra fibers required for protection are minimized compared with previous protection schemes. The self-protection and in-service fault localization capabilities of the proposed WDM-PON architecture are experimentally verified.  相似文献   

16.
R.S. Kaler 《Optik》2012,123(18):1654-1658
In this paper, the 16 channel WDM systems at 10 Gb/s have been investigated for the various optical amplifiers and hybrid optical amplifiers and the performance has been compared on the basis of transmission distance and dispersion. The amplifiers EDFA and SOA have been investigated independently and further compared with hybrid optical amplifiers like RAMAN-EDFA and RAMAN-SOA. It is observed that hybrid optical amplifier RAMAN-EDFA provides the highest output power (12.017 and 12.088 dBm) and least bit error rate (10?40 and 9.08 × 10?18) at 100 km for dispersion 2 ps/nm/km and 4 ps/nm/km respectively.  相似文献   

17.
In this paper, we propose a new structure of a centralized-light-source wavelength division multiplexed passive optical network (WDM-PON) utilizing inverse-duobinary-return-to-zero (inverse-duobinary-RZ) downstream and DPSK upstream. It reuses downstream light for the upstream modulation, which retrenches lasers assembled at each optical network unit (ONU), and ultimately cuts down the cost of ONUs a great deal. Meanwhile, a 50-km-reach WDM-PON experiment with 10-Gb/s inverse-duobinary-RZ downstream and 6-Gb/s DPSK upstream is demonstrated here. It is revealed to be a novel cost-effective alternative for the next generation access network.  相似文献   

18.
Millimeter-wave (mm-wave) operated in W-band (75 GHz–0.11 THz) is of particular interests, since this frequency band can carry signals at much higher data rates. We demonstrate a 10 Gb/s optical carrier-distributed network with the wireless communication system. The mm-wave signal at carrier frequency of 0.1 THz is generated by a high speed near-ballistic uni-traveling carrier photodiode (NBUTC-PD) based transmitter (Tx), which is optically excited by optical short pulses. The optical pulse source is produced from a self-developed photonic mm-wave waveform generator (PMWG), which allows spectral line-by-line pulse shaping. Hence these optical pulses have high tolerance to fiber chromatic dispersion. The W-band 10 Gb/s wireless data is transmitted and received via a pair of horn antennas. The received 10 Gb/s data is envelope-detected and then used to drive an optical modulator at the remote antenna unit (RAU) to produce the upstream signal sending back to the central office (CO). 20 km single mode fiber (SMF) error free transmission is achieved. Analysis about the optimum repetition rate of the optical pulse source and the transmission performance of the upstream signal are also performed and discussed.  相似文献   

19.
A dual-wavelength ytterbium doped fiber laser with a narrowest spacing of 0.53 nm and widest spacing of 12.2 nm at 1064 nm is presented in this paper. An arrayed waveguide grating (AWG) together with an optical channel selector (OCS) have also been incorporated in the proposed setup that works as a switchable mechanism giving 23 different wavelength tunings. Producing an average output power of ?8 dB m and side mode suppression ratio (SMSR) of 59.65 dB, this dual-wavelength fiber laser is quite stable with an output power variance as low as 0.47 dB giving it an advantage due to its switching ability and stable dual-wavelength output powers.  相似文献   

20.
In this paper, we have proposed and demonstrated a novel lightwave centralized wavelength division multiplexing radio-over-fiber (WDM-RoF) system employing OFDM-CPM generation and carrier-reuse technique. The 4 × 2.5-Gb/s OFDM-CPM wireless signal and upstream OOK signal are transmitted over 25 km SMF-28 successfully. We further compare the OFDM-CPM signal with an OFDM-QPSK signal, and the experimental results suggest that OFDM-CPM modulation scheme will be a promising candidate for future WDM-RoF system.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号