首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
We develop a systematic way to find the similarity transformation and investigate nonautonomous optical similariton dynamics for (n + 1)-dimensional nonlinear Schrödinger equation in the inhomogeneous optical fibers. A condition between the parameters of the mediums, which hints a exact balance between the dispersion/diffraction, nonlinearity and the gain/loss, has been obtained. Under this condition the optical similariton transmission in the dispersion-decreasing fibers (DDF) can be exactly controlled by proper dispersion management. Moreover, novel propagation dynamics of bright and dark similaritons on the background waves and optical rogue waves (rogons) in DDF are investigated too.  相似文献   

2.
Evolution of solitons is addressed in the framework of a third-order nonlinear Schrödinger equation (NLSE), including nonlinear dispersion, third-order dispersion and a pseudo-stimulated-Raman-scattering (pseudo- SRS) term, i.e., a spatial-domain counterpart of the SRS term, which is well known as a part of the temporal-domain NLSE in optics. In this context, it is induced by the underlying interaction of the high-frequency envelope wave with a damped low-frequency wave mode. In addition, spatial inhomogeneity of the second-order dispersion (SOD) is assumed. As a result, it is shown that the wavenumber downshift of solitons, caused by the pseudo-SRS, can be compensated with the upshift provided by decreasing SOD coefficients. Analytical results and numerical results are in a good agreement.  相似文献   

3.
 在40 Gbit/s相干偏振复用正交相移键控(QPSK)传输系统中,为了补偿由于光纤中非线性效应引起的传输信号损伤,采用了基于Manakov方程的反向传播非线性补偿算法.传统的基于标量非线性薛定谔方程(NLSE)的反向传播算法忽略了偏振模色散(PMD)的作用,因此在偏振复用系统中不能补偿由于PMD引起的信号损伤|而基于Manakov方程的数字信号处理方法能够对PMD与克尔非线性效应的耦合作用进行补偿.从仿真与实验两个方面对此方法在40 Gbit/s相干偏振复用QPSK传输系统中的补偿效果进行了验证.结果均表明,与NLSE相比,基于Manakov方程的反向传播算法在400 km长距离QPSK传输中显示出更好的性能.在光信噪比(OSNR)为18 dB时,基于Manakov方程的反向传播算法得到的Q值与NLSE相比提高约3dB.  相似文献   

4.
By the use of an auxiliary equation, we find bright and dark optical soliton and other soliton solutions for the higher-order nonlinear Schr(o)dinger equation (NLSE) with fourth-order dispersion (FOD), cubic-quintic terms, self-steepening, and nonlinear dispersive terms. Moreover, we give the formation condition of the bright and dark solitons for this higher-order NLSE.  相似文献   

5.
6.
Pingyuan Liang  Jianchu Liang 《Optik》2011,122(14):1289-1292
A new kind of solutions namely elliptic function solutions to the (1 + 1) dimensional nonlinear Schrödinger equation (NLSE) in dispersion, nonlinearity and gain management system are obtained. The solutions are the generalization of analytical solutions to one-dimensional NLSE. The properties of the amplitudes and the phases of the solutions are investigated.  相似文献   

7.
By means of the similarity transformation connecting with the solvable stationary equation, the self-similar combined Jacobian elliptic function solutions and fractional form solutions of the generalized nonlinear Schrödinger equation (NLSE) are obtained when the dispersion, nonlinearity, and gain or absorption are varied. The propagation dynamics in a periodic distributed amplification system is investigated. Self-similar cnoidal waves and corresponding localized waves including bright and dark similaritons (or solitons) for NLSE and arch and kink similaritons (or solitons) for cubic-quintic NLSE are analyzed. The results show that the intensity and the width of chirped cnoidal waves (or similaritons) change more distinctly than that of chirp-free counterparts (or solitons).  相似文献   

8.
We construct analytical self-similar solutions for the generalized (3+1)-dimensional nonlinear Schrödinger equation with polynomial nonlinearity of arbitrary order. As an example, we list self-similar solutions of quintic nonlinear Schrödinger equation with distributed dispersion and distributed linear gain, including bright similariton solution, fractional and combined Jacobian elliptic function solutions. Moreover, we discuss self-similar evolutional dynamic behaviors of these solutions in the dispersion decreasing fiber and the periodic distributed amplification system.  相似文献   

9.
By means of the similarity transformation, we obtain exact solutions of the(2+1)-dimensional generalized nonlinear Schrödinger equation, which describes thepropagation of optical beams in a cubic-quintic nonlinear medium with inhomogeneousdispersion and gain. A one-to-one correspondence between such exact solutions andsolutions of the constant-coefficient cubic-quintic nonlinear Schrödinger equation existswhen two certain compatibility conditions are satisfied. Under these conditions, wediscuss nonlinear tunneling effect of self-similar solutions. Considering the fluctuationof the fiber parameter in real application, the exact balance conditions do not satisfy,and then we perform direct numerical analysis with initial 5% white noise for the brightsimilariton passing through the diffraction barrier and well. Numerical calculationsindicate stable propagation of the bright similariton over tens of diffraction lengths.  相似文献   

10.
Ishii  Yasushi 《Optical Review》2021,28(4):462-470
Optical Review - The response of light in a nonlinear dispersive medium is governed by the nonlinear Schrödinger equation (NLSE). In general, for higher order group velocity dispersion (GVD)...  相似文献   

11.
Vector soliton operation of erbium-doped fiber lasers mode locked with atomic layer graphene was experimentally investigated. Either the polarization rotation or polarization locked vector dissipative solitons were experimentally obtained in a dispersion-managed cavity fiber laser with large net cavity dispersion, while in the anomalous dispersion cavity fiber laser, the phase locked nonlinear Schrödinger equation (NLSE) solitons and induced NLSE soliton were experimentally observed. The vector soliton operation of the fiber lasers unambiguously confirms the polarization insensitive saturable absorption of the atomic layer graphene when the light is incident perpendicular to its 2-dimentional (2D) atomic layer.  相似文献   

12.
The passive nonlinear reshaping in normally dispersive optical fibers in the steady-state regime is studied numerically. It is found that normal dispersion and self-phase modulation are able to provide pulse reshaping towards a parabolic pulse profile at the distances exceeding the optical wave breaking length. However, as compared to the similariton formation in active fibers the resulted pulse shape in passive fibers is strongly depended on the initial pulse parameters and nonlinear and dispersive fiber properties as well. The influence of initial pulse shape, initial chirp, third-order dispersion and loss on the parabolic pulse formation is studied consistently, and estimation of practical conditions which are needed for parabolic pulses formation in a passive fiber is provided.  相似文献   

13.
A broad class of exact self-similar solutions to the nonlinear Schr?dinger equation (NLSE) with distributed dispersion, nonlinearity, and gain or loss has been found. Appropriate solitary wave solutions applying to propagation in optical fibers and optical fiber amplifiers with these distributed parameters have also been studied. These solutions exist for physically realistic dispersion and nonlinearity profiles in a fiber with anomalous group velocity dispersion. They correspond either to compressing or spreading solitary pulses which maintain a linear chirp or to chirped oscillatory solutions. The stability of these solutions has been confirmed by numerical simulations of the NLSE.  相似文献   

14.
Semiclassically concentrated states of the nonlinear Schrödinger equation (NLSE) with unitary nonlinearity, representing multidimensional localized wave packets, are constructed on the basis of the Maslov complex germ theory. A system of ordinary differential equations of Hamilton-Ehrenfest (HE) type, describing the motion of the wave packet centroid, is derived. The structure of the HE system is strongly influenced by the initial conditions of the Cauchy problem for the NLSE. Wave packets of Gaussian type are constructed in an explicit form. Possible use of the solutions constructed in the problem of optical pulse propagation in a nonlinear medium with nonstationary dispersion is discussed.  相似文献   

15.
《Physics letters. A》2014,378(30-31):2137-2141
We present an explicit analytical form of first and second order rogue waves for distributive nonlinear Schrödinger equation (NLSE) by mapping it to standard NLSE through similarity transformation. Upon obtaining the rogue wave solutions, we study the propagation of rogue waves through a periodically distributed system for the two cases when Wronskian of dispersion and nonlinearity is (i) zero, (ii) not equal to zero. For the former case, we discuss a mechanism to control their propagation and for the latter case we depict the interesting features of rogue waves as they propagate through dispersion increasing and decreasing fiber.  相似文献   

16.
In this work, the split-step Fourier method for beam propagation is used to investigate the interaction of ultra-short pulses with epsilon-near-zero materials. The propagation of pulses is governed by the nonlinear Schrödinger equation (NLSE) containing dispersion, gain-bandwidth, self-phase modulation, self-steepening, and absorption parameters. It is found that the intensity profile of the pulse is broadened and the phase of the pulse is shifted by dispersion phenomena. The gain/loss related to the imaginary part of the refractive index causes an increase or decrease in intensity and pulse edge effects. These effects do not favor the steady propagation of the pulse. The self-phase modulation is not noted to appreciably affect the intensity pulse profile. The self-steepening modifies the phase and energy of the pulse during propagation, as well as absorption, which influences the losses by both the linear and nonlinear effects.  相似文献   

17.
A variational technique to deal with nonlinear dissipative pulse propagation is established. By means of a generalization of the Kantorovitch method, suitable for non-conservative systems, we are able to cope with an extended nonlinear Schr?dinger equation (NLSE) which describes pulse propagation under the influence of nonlinear loss and/or gain, in particular, in the presence of two-photon absorption (TPA). Based on the characteristics of the exact solution of the NLSE in the absence of TPA, we investigate the effects of frequency dispersion of the nonlinear susceptibility associated to the two-photon resonance, obtaining the necessary conditions for a solitary wave solution, even in the presence of a self-steepening term. Received: 4 August 1997 / Received in final form: 25 November 1997 / Accepted: 14 January 1998  相似文献   

18.
Xuefeng Zhang 《中国物理 B》2023,32(1):10505-010505
We make a quantitative study on the soliton interactions in the nonlinear Schrödinger equation (NLSE) and its variable-coefficient (vc) counterpart. For the regular two-soliton and double-pole solutions of the NLSE, we employ the asymptotic analysis method to obtain the expressions of asymptotic solitons, and analyze the interaction properties based on the soliton physical quantities (especially the soliton accelerations and interaction forces); whereas for the bounded two-soliton solution, we numerically calculate the soliton center positions and accelerations, and discuss the soliton interaction scenarios in three typical bounded cases. Via some variable transformations, we also obtain the inhomogeneous regular two-soliton and double-pole solutions for the vcNLSE with an integrable condition. Based on the expressions of asymptotic solitons, we quantitatively study the two-soliton interactions with some inhomogeneous dispersion profiles, particularly discuss the influence of the variable dispersion function f(t) on the soliton interaction dynamics.  相似文献   

19.
唐政华  颜家壬  刘凌虹 《中国物理》2006,15(11):2638-2643
Dark soliton solutions of the one-dimensional complex Ginzburg--Landau equation (CGLE) are analysed for the case of normal group-velocity dispersion. The CGLE can be transformed to the nonlinear Schr\"{o}dinger equation (NLSE) with perturbation terms under some practical conditions. The main properties of dark solitons are analysed by applying the direct perturbation theory of the NLSE. The results obtained may be helpful for the research on the optical soliton transmission system.  相似文献   

20.
In this paper, based on physics-informed neural networks (PINNs), a good deep learning neural network framework that can be used to effectively solve the nonlinear evolution partial differential equations (PDEs) and other types of nonlinear physical models, we study the nonlinear Schrödinger equation (NLSE) with the generalized ${ \mathcal P }{ \mathcal T }$-symmetric Scarf-II potential, which is an important physical model in many fields of nonlinear physics. Firstly, we choose three different initial values and the same Dirichlet boundary conditions to solve the NLSE with the generalized ${ \mathcal P }{ \mathcal T }$-symmetric Scarf-II potential via the PINN deep learning method, and the obtained results are compared with those derived by the traditional numerical methods. Then, we investigate the effects of two factors (optimization steps and activation functions) on the performance of the PINN deep learning method in the NLSE with the generalized ${ \mathcal P }{ \mathcal T }$-symmetric Scarf-II potential. Ultimately, the data-driven coefficient discovery of the generalized ${ \mathcal P }{ \mathcal T }$-symmetric Scarf-II potential or the dispersion and nonlinear items of the NLSE with the generalized ${ \mathcal P }{ \mathcal T }$-symmetric Scarf-II potential can be approximately ascertained by using the PINN deep learning method. Our results may be meaningful for further investigation of the nonlinear Schrödinger equation with the generalized ${ \mathcal P }{ \mathcal T }$-symmetric Scarf-II potential in the deep learning.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号