首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
用激光清洗金膜表面硅油污染物   总被引:2,自引:0,他引:2  
采用CO2激光对镀金K9玻璃表面的二甲基硅油污染物进行清洗,在激光器单点作用模式下,分别研究了激光功率和作用时间对清洗效果的影响;并研究了连续扫描工作模式下的激光清洗效果。采用光学显微镜和傅里叶变换红外光谱仪表征激光清洗效果,研究结果表明:通过良好的控制激光参数,采用CO2激光清洗二甲基硅油具有明显的效果;此种非接触式清洗方式可确保K9玻璃表面的金膜完好无损。采用有限元分析软件模拟计算了激光功率和作用时间对清洗过程中温度的影响,计算结果与实验结果规律一致。  相似文献   

2.
采用CO2激光对镀金K9玻璃表面的二甲基硅油污染物进行清洗,在激光器单点作用模式下,分别研究了激光功率和作用时间对清洗效果的影响;并研究了连续扫描工作模式下的激光清洗效果。采用光学显微镜和傅里叶变换红外光谱仪表征激光清洗效果,研究结果表明:通过良好的控制激光参数,采用CO2激光清洗二甲基硅油具有明显的效果;此种非接触式清洗方式可确保K9玻璃表面的金膜完好无损。采用有限元分析软件模拟计算了激光功率和作用时间对清洗过程中温度的影响,计算结果与实验结果规律一致。  相似文献   

3.
Dye-sensitized solar cells (DSSCs) use two glass substrates (photo electrode and counter electrode) coated with fluorine-doped tin oxide (FTO) to harvest light into the cell and to collect electrons. The space between the photo electrode and the counter electrode are filled with a liquid type electrolyte for electron transfer into the cell. Therefore, an appropriate sealing method is required to prevent the liquid electrolyte leaking out. In this paper, a simple CO2 laser beam with TEM00 mode excited by a 60 Hz AC discharge was used to seal two glass substrates coated with FTO for the fabrication of DSSCs. The sealing technique improved the durability and stability of the DSSCs. The optimal conditions for the sealing of the DSSCs are related to the pin-hole diameter, the discharge current and the moving velocity of the target. Especially, the CO2 laser beam is used as a heat source that is precisely controlled by the pin-hole, which plays an important role in adjusting its spot size. From these results, the maximum laser power was found to be 40 W at 18 Torr and 35 mA. In order to achieve the best sealing quality, the following parameters are required: a pin-hole diameter of 4 mm, input voltage of 10.73 kV, discharge current of 9.31 mA, moving velocity of 1 mm/s and distance from the target surface of 26.5 cm. Scanning electron microscope images show that the sealing quality obtained using the CO2 laser beam is superior to that obtained using a hot press or soldering iron.  相似文献   

4.
S. Jelvani  A.M. Koushki 《Optik》2012,123(16):1421-1424
In this paper, the laser output power of a fast-axial flow CO2 laser was optimized with gas pressures ratio of CO2:N2:He using a genetic algorithm technique. The power of laser was increased from 500 W (un-optimized case) to 2200 W (simulated case), also experimentally the power has achieved the value of 700 W (optimized case).  相似文献   

5.
A new heterogeneous sonocatalytic system consisting of a MoO3/Al2O3 catalyst and H2O2 combined with ultrasonication was studied to improve and accelerate the oxidation of model sulfur compounds of diesel, resulting in a significant enhancement in the process efficiency. The influence of ultrasound on properties, activity and stability of the catalyst was studied in detail by means of GC-FID, PSD, SEM and BET techniques. Above 98% conversion of DBT in model diesel containing 1000 μg/g sulfur was obtained by new ultrasound-assisted desulfurization at H2O2/sulfur molar ratio of 3, temperature of 318 K and catalyst dosage of 30 g/L after 30 min reaction, contrary to the 55% conversion obtained during the silent process. This improvement was considerably affected by operation parameters and catalyst properties. The effects of main process variables were investigated using response surface methodology in silent process compared to ultrasonication. Ultrasound provided a good dispersion of catalyst and oxidant by breakage of hydrogen bonding and deagglomeration of them in the oil phase. Deposition of impurities on the catalyst surface caused a quick deactivation in silent experiments resulting only 5% of DBT oxidation after 6 cycles of silent reaction by recycled catalyst. Above 95% of DBT was oxidized after 6 ultrasound-assisted cycles showing a great improvement in stability by cleaning the surface during ultrasonication. A considerable particle size reduction was also observed after 3 h sonication that could provide more dispersion of catalyst in model fuel.  相似文献   

6.
High interconnection density associated with current electronics products poses certain challenges in designing circuit boards. Methods, including laser-assisted microvia drilling and surface mount technologies for example, are being used to minimize the impacts of the problems. However, the bottleneck is significantly pronounced at bit data rates above 10 Gbit/s where losses, especially those due to crosstalk, become high. One solution is optical interconnections (OI) based on polymer waveguides. Laser ablation of the optical waveguides is viewed as a very compatible technique with ultraviolet laser sources, such as excimer and UV Nd:YAG lasers, being used due to their photochemical nature and minimal thermal effect when they interact with optical materials. In this paper, the authors demonstrate the application of grey relational analysis to determine the optimized processing parameters concerning fabrication of multimode optical polymer waveguides by using infra-red 10.6 µm CO2 laser micromachining to etch acrylate-based photopolymer (Truemode). CO2 laser micromachining offers a low cost and high speed fabrication route needed for high volume productions as the wavelength of CO2 lasers can couple well with a variety of polymer substrates. Based on the highest grey relational grade, the optimized processing parameters are determined at laser power of 3 W and scanning speed of 100 mm/s.  相似文献   

7.
In this research work, a statistical analysis of the CO2 laser beam welding of dual phase (DP600)/transformation induced plasticity (TRIP700) steel sheets was done using response surface methodology. The analysis considered the effect of laser power (2–2.2 kW), welding speed (40–50 mm/s) and focus position (?1 to 0 mm) on the heat input, the weld bead geometry, uniaxial tensile strength, formability limited dome height and welding operation cost. The experimental design was based on Box–Behnken design using linear and quadratic polynomial equations for predicting the mathematical models. The results indicate that the proposed models predict the responses adequately within the limits of welding parameters being used and the welding speed is the most significant parameter during the welding process.  相似文献   

8.
Information from the analysis of gasses dissolved in insulating oils is valuable for early a transformer maintenance. By means of dissolved gas analysis (DGA), it is possible to distinguish faults such as partial discharge (corona), overheating (pyrolysis) and arcing in a great variety of oil-filled equipment. Tunable fiber laser-based second harmonic photoacoustic spectroscopy offers a fast and good-noise-immunity technique for the quantitative analysis of trace gases in transformer oil. In this work, the discharge feature gases, such as C2H2, CH4, CO2 and H2O, were measured with a tunable laser photoacoustic spectrometer at the 1530.3709 nm transition line, as a typical application of precise measurement of multi-gas, a proposed BSS model based on overcomplete ICA basis and five-point-sampling method based on a created weight-truncation-constraint equation was used to remove noise so that several fault gases can be extracted with a higher detection accuracy and a method detection limit. Experiment shows that within 0.15 nm band near 1530.3709 nm, the four-gas contents have been detected and extracted and the detection accuracy has been improved from available scanning spacing of 0.03 nm to available extracting spacing of 0.0011 nm. At room temperature and atmospheric pressure, this can achieve simultaneous detection for multiple feature gases in discharged transformer oil using laser source with a limited waveband.  相似文献   

9.
The dissimilar full depth laser-butt welding of low carbon steel and austenitic steel AISI 316 was investigated using CW 1.5 kW CO2 laser. The effect of laser power (1.1–1.43 kW), welding speed (25–75 cm/min) and focal point position (?0.8 to ?0.2 mm) on the weld-bead geometry (i.e. weld-bead area, A; upper width, Wu; lower width, Wl and middle width, Wm) and on the operating cost C was investigated using response surface methodology (RSM). The experimental plan was based on Box–Behnken design; linear and quadratic polynomial equations for predicting the weld-bead widthness references were developed. The results indicate that the proposed models predict the responses adequately within the limits of welding parameters being used. The regression equations were used to find optimum welding conditions for the desired geometric criteria.  相似文献   

10.
Low-power CO2 laser direct-writing ablation was used to micromachine a microchannel on the polycarbonate substrate in this work. The influence of the process parameters (the laser power, the moving velocity of the laser beam and the scanning times) on the micromachining quality (the depth, the width and their aspect ratio) of the microchannel was experimentally studied. The depth and width of microchannel both increase with the increase of the laser power and the decrease of the moving velocity of the laser beam. When higher laser power and slower moving velocity were used, the polycarbonate surface bore more heat irradiated from the CO2 laser for longer time which results in the formation of deeper and wider molten pool, hence the ability to fabricate bigger microchannel. Because of the effect of the laser power on the depth and width of microchannels, higher aspect (depth/width) ratio could be achieved using slower moving velocity and higher laser power, and it would reach a steady state when the laser power increases to 9.0 W possibly caused by the effect of laser power on the different directions of microchannel. The polycarbonate–polycarbonate chip was bonded with hot-press bonding technique.  相似文献   

11.
The damage/ablation morphologies and laser induced damage threshold (LIDT) of three different sapphire samples: original, 1064 nm laser conditioned and 10.6 μm CO2 laser polished substrates are investigated with ns pulses laser irradiation. The results indicate that the damage resistance capability cannot be enhanced by 1064 nm laser conditioning or CO2 laser polishing. The damage/ablation morphology of 1064 nm-laser conditioned samples is same as that of the original sapphire. But it is different from the damage/ablation morphology of the CO2 laser polished sapphire. The “gentle and strong” ablation phases are observed in this work and several phenomena are observed in the two ablation phases. Ripple is observed in the “gentle” ablation processes, while convex spots and raised rims are observed in the “strong” ablation processes. Meanwhile, stripe damage and pin-points are observed in the CO2 laser conditioned sapphire after ns laser irradiation. The formation mechanisms of the phenomena are also discussed for the explanation of related damage/ablation morphology. The results may be helpful for the damage/ablation investigation of sapphire in high power laser systems.  相似文献   

12.
Yi Qiu  Yude Li  Guoying Feng  Yonggen Xu 《Optik》2012,123(1):91-93
The experimental proof of the light output on the two-cone axisymmetric-folded combination (ASFC) CO2 laser has been performed. The output power from the centre discharge tube is 26.7 W, and that of one couple of folded discharge tubes is 40.5 W. Seventeen beams can be obtained from the device, which are from the folded cavities with axes placed in the inner and outer cones, respectively. Therefore, the ASFC CO2 laser with more discharge tubes can be fabricated and much higher output power can be obtained.  相似文献   

13.
We present a high-power 1.53 μm laser based on intracavity KTA-OPO driven by diode-end-pumped acousto-optical Q-switched YVO4/Nd:YVO4 composite. The composite crystal was utilized for reducing the thermal effect, and the mode mismatch compensating OPO cavity was designed for efficient OPO conversion. The output power of eye-safe laser at 1535 nm was up to 4.4 W with the pump power of 27 W, corresponding to a diode-to-signal conversion efficiency of 16.3%. To our knowledge, this is the highest output power in diode-end-pumped circumstances. In the experiment, the strong yellow light generated by Raman conversion and frequency doubling in the KTA crystal was observed.  相似文献   

14.
Reliable prediction of char conversion, heat release, and particle temperature during heterogeneous char oxidation relies upon quantitative calculation of the CO2/CO production ratio. This ratio depends strongly on the surface temperature, but also on the local partial pressure of oxygen and thus becomes more important in simulations of oxy-fuel or pressurized combustion systems. Existing semi-empirical intrinsic kinetic models of char combustion have been calibrated against the temperature-dependence of the CO2/CO production ratio, but have neglected the effect of the local oxygen concentration. In this study we employ steady-state analysis to demonstrate the limitations of the existing 3-step semi-global kinetics models and to show the necessity of using a 5-step model to adequately capture the temperature- and oxygen-dependence of the CO2/CO production ratio. A suitable 5-step heterogeneous reaction mechanism is developed and its rate parameters fit to match CO2/CO production data, global reaction orders, and activation energies reported in the literature. The model predictions are interrogated for a broad range of conditions characteristic of pressurized, oxy-fuel, and conventional high-temperature char combustion, for which essentially no experimental information on the CO2/CO production ratio is available. The results suggest that the CO2/CO production ratio may be considerably lower than that estimated with existing power-law correlations for oxygen partial pressures less than 10 kPa and surface temperatures higher than 1600 K. To assist with implementation of the mechanistic CO2/CO production ratio results, an analytical procedure for calculating the CO2/CO production ratio is presented.  相似文献   

15.
Bi4(GeO4)3 glass materials have been characterized by X-ray excited luminescence, photoluminescence and cathodo-luminescence measurements. The materials were obtained by crystallization at different temperatures and their spectroscopic parameters were compared before and after crystallization. Thermoluminescence curves recorded after electron irradiation of BGO glass behave similarly to BGO crystals, showing several peaks between 408 K (135 °C) and 610 K (337 °C). The differences between the Bi4(GeO4)3 crystals and glass materials are believed to result from the random distribution of GeO4 tetrahedra around Bi3+ ions which influences the photoluminescence and TL parameters. The CL images of glass-ceramic samples obtained by partial crystallization at 600 °C show luminescent crystalline structures, which are probably responsible for the increase in scintillation efficiency.  相似文献   

16.
Generally, the quality of a weld joint is directly influenced by the welding input parameter settings. Selection of proper process parameters is important to obtain the desired weld bead profile and quality. In this research work, numerical and graphical optimization techniques of the CO2 laser beam welding of dual phase (DP600)/transformation induced plasticity (TRIP700) steel sheets were carried out using response surface methodology (RSM) based on Box–Behnken design. The procedure was established to improve the weld quality, increase the productivity and minimize the total operation cost by considering the welding parameters range of laser power (2–2.2 kW), welding speed (40–50 mm/s) and focus position (?1 to 0 mm). It was found that, RSM can be considered as a powerful tool in experimental welding optimization, even when the experimenter does not have a model for the process. Strong, efficient and low cost weld joints could be achieved using the optimum welding conditions.  相似文献   

17.
A TEA CO2 laser beam (500 mJ, 200 ns) was focused on film samples, under low pressure surrounding gas at around 1 Torr. It has been found that to generate the laser plasma for the sample of oil or powder, the sample should be attached in the form of thin film on the surface of a metal, such as copper plate, which acts as a sub-target. The plasma has favorable characteristics for spectrochemical analysis due to its low background and sharp line spectrum, and hence an optical multichannel analyzer (OMA) without gated function can be used for spectrum acquisition. Using the sub-target effect we have performed for analyses on water molecular layer and water impurities, where the water was condensed by heating process or electrolysis process on the sub-target so that impurities in the water were attached to the metal surface. It should be emphasized that in this case the sub-target itself has never been ablated and no any damaged on its surface. Another application of the sub-target effect is used for the analysis of oil contamination in soils. We have succeeded to detect clearly the emission line of C I 247.9 nm from the carbon as a major constituent of the oil. To derive the carbon emission intensity coming only from oil, compensation was made to cancel the contribution from other organic species using the emission of Ca, which inherently contains in other organic species in soil. As result, a good linear relationship between carbon emission intensity and oil concentration was obtained.  相似文献   

18.
In this article, an experimental study of a miniature, sealed-off, high-repetition-rate transversely excited atmospheric-pressure (TEA) CO2 laser with a kind of surface-wire-corona preionization (SWCP) is described. We have utilized an SWCP consisting of SiO2 dielectric tube and a fine wire strained and attached to the dielectric surface. A BN ceramic material, which has an extremely low coefficient of thermal expansion of about 5 × 10−7/°C was employed as a supporter of the resonator. A measurement on emission spectra of SWCP has been reported. By applying SWCP to the TEA CO2 laser, efficient laser operation at an overall efficiency of 9.8% with an output energy of 150 mJ has been achieved from a small discharge volume of 25 cm3 with an active length of 230 mm. At the pulse repetition frequency of 60 Hz, the TEM00 mode of laser beam with pulse width of 60 ns was obtained.  相似文献   

19.
A Nd:YAG laser (1064 nm) induces optical breakdown of the airborne above the gold-coated K9 glass surface and the created shockwave removes the SiO2 particles contaminated on the gold films. The laser cleaning efficiency has been characterized by optical microscopy, dark field imaging, ultraviolet-visible-near infrared spectroscopy, Fourier transform infrared spectroscopy, X-ray photoelectron spectroscopy and the Image-pro software. The relationships between removal ratio and particle position and laser gap distance have been studied in the case of single pulse laser cleaning. The results show that the 1064 nm laser induced plasma shockwave can effectively remove the SiO2 particles. The removal ratio can reach above 90%. The effects of particle position and laser gap distance on the cleaning efficiency are simulated for the single pulse laser cleaning. The simulated results are consistent with the experimental ones.  相似文献   

20.
The stability of the recently discovered CO-induced and self-organized CuPt surface alloy was explored at near ambient pressures of O2 (200 mbar) at room temperature, in a CO + H2 mix (Ptot = 220 mbar, 4% CO) from room temperature to 573 K, as well as in a CO + H2O mix (Ptot = 17 mbar, 50% CO) from room temperature to 673 K. No indications of substantial changes in surface structure were observed under the latter conditions compared to CO alone whereas the O2 oxidation resulted in CO removal and the build-up of an ultrathin CuOx-film. However, the oxidized CO/CuPt surface alloy could be regenerated by reducing the CuOx in 100 mbar CO for 10 min at room temperature. The results show, amongst others, the stability of the CuPt surface alloy in various environments containing CO and how a novel coinage/Pt-group bimetallic surface alloy catalyst induced by CO adsorption can be reactivated before use in applications such as electrochemistry at ambient temperatures.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号