首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 9 毫秒
1.
2.
The silicon-based three-dimensional hybrid long-range plasmonic waveguide not only supports long-range propagation distance (~mm) but also has an ultra-small modal area (~10?2 μm2) at 1.55 μm. Here, we propose a directional coupler for effective coupling from a dielectric slab-waveguide to the hybrid plasmonic waveguide on a silicon platform. Our simulation results show that the coupler is able to excite hybrid long-range plasmonic mode with short coupling length, low insertion loss, and high extinction ratio. With the arm separation of 0.3 μm, the coupling length can be made 5.2 % of the propagation length of the hybrid plasmonic waveguide, while the insertion loss and extinction ratio are ?0.12 and 22.4 dB, respectively. This coupler offers the potential applications in signal routing between the hybrid long-range plasmonic waveguide and dielectric waveguide in the photonic integrated circuits.  相似文献   

3.
The design of a vertical directional coupler between a three-dimensional plasmonic slot waveguide and a silicon waveguide is theoretically investigated in detail. It consists of two steps: the design of isolated plasmonic slot waveguide and silicon waveguide and the determination of the gap between the two waveguides and the length of a coupling region. The designed structure transfers 70.8% of the power carried by the silicon waveguide mode to the plasmonic slot waveguide mode when the gap is 150 nm and the coupling length is 2.14 μm. The wavelength dependence of our vertical directional coupler is also studied. The analysis shows that the amount of the transferred power changes slightly over a very wide wavelength range between 1.40 μm and 1.61 μm. Moreover, if we employ the fabrication technology for silicon photonics, it is quite tolerant to the variation of the length of its coupling section. Finally, the vertical directional coupler is considered for a polarizer.  相似文献   

4.
In this paper, a novel MMI coupler, based on general interference, with tapered waveguide geometry has been proposed for reduction of coupling length. The coupling characteristics and power imbalance of the proposed structure are compared with conventional MMI structures by using a mathematical model based on sinusoidal modes. It is seen that the beat length for tapered MMI coupler with angle of taper ∼1.05° is reduced by ∼24% of that of conventional MMI coupler and the coupling characteristics obtained with the mathematical model, match well with those obtained by more sophisticated BPM computer aided design software. The power imbalance for tapered 3 dB MMI coupler is more sensitive to the wavelength than that for conventional 3 dB MMI coupler and variation of power imbalance with fabrication tolerance for both the MMI coupler is almost same.  相似文献   

5.
Hybrid plasmonic waveguides consisting of a metal plane separated from a high-index medium by a low-index spacer have recently attracted much interest. Here we show that, by suitably choosing the dimensions and material properties of the hybrid waveguide, a very compact and broadband TE-pass polarizer can be implemented. Finite-difference time-domain simulation indicates that the proposed device can provide large extinction ratio with low insertion loss for the TE mode.  相似文献   

6.
Bo Zhang  Shan Du 《Optics Communications》2008,281(23):5756-5759
We investigate the properties of arc plasmonic waveguide coupler between two-dimensional dielectric slab waveguides and plasmonic waveguides with two-dimensional finite difference time domain methods. The simulation results show that transmission efficiency between high index dielectric slab waveguides with width 300 nm and silver-air-silver waveguides with width 40 nm connected by the coupler can reach to 90.4% at optical communication wavelength. And, by optimizing the shapes near the ends of the coupler, the transmission efficiency can be improved to 98.4%.  相似文献   

7.
For development of complementary metal–oxide–semiconductor (CMOS)-compatible integrated optical circuits, vertical directional coupling between a hybrid plasmonic slot waveguide and a Si waveguide is theoretically investigated in detail. To determine the vertical separation gap and efficient coupling length, we investigate the characteristics of the even and odd supermodes at a wavelength of 1.55 μm. The vertical coupler transfers 90% of the power carried by the Si waveguide to the hybrid plasmonic slot waveguide after normalizing to reference waveguides when the gap is 60 nm and the coupling length is 2.6 μm. Because of the lossy hybrid guided mode in the plasmonic waveguide, the transmitted power exhibits damped sinusoidal behavior depending on the overlapping length. The proposed vertical coupler shows more efficient light coupling between a dielectric and plasmonic waveguide in comparison to the other types of hybrid coupler, and can be exploited further for on-chip integrated opto-electronic circuits.  相似文献   

8.
一种新型无色散慢光光子晶体薄板波导   总被引:1,自引:0,他引:1       下载免费PDF全文
沈宏君  田慧平  纪越峰 《物理学报》2010,59(4):2820-2826
利用椭圆形孔替代传统光子晶体薄板波导中邻接波导的最内层两排圆孔构成一种新型低损耗光子晶体薄板光波导.该波导的群速度和群速度色散特性强烈依赖于波导中这两排邻接波导的椭圆孔的特性.借助波导导模展开方法,计算得到波导的能带结构和群指数,并分析了它们与椭圆孔的参数关系.通过优化这些椭圆孔的参数,可以增加光子晶体光波导导模在光锥以下的无固有传输损耗带宽,在2—45 nm 的带宽上实现无色散的常数群速度.这些理论结果将为低损耗低色散慢光波导的设计制造提供理论基础. 关键词: 光子晶体薄板波导 群速度 群指数 群速度色散  相似文献   

9.
利用椭圆形孔替代传统光子晶体薄板波导中邻接波导的最内层两排圆孔构成一种新型低损耗光子晶体薄板光波导.该波导的群速度和群速度色散特性强烈依赖于波导中这两排邻接波导的椭圆孔的特性.借助波导导模展开方法,计算得到波导的能带结构和群指数,并分析了它们与椭圆孔的参数关系.通过优化这些椭圆孔的参数,可以增加光子晶体光波导导模在光锥以下的无固有传输损耗带宽,在2—45 nm 的带宽上实现无色散的常数群速度.这些理论结果将为低损耗低色散慢光波导的设计制造提供理论基础.  相似文献   

10.
Numerical solutions are obtained for the proposed novel hybrid terahertz plasmonic waveguide structure, namely the silicon metal silicon (SMS) waveguide. It is shown that the SMS waveguide can overcome the diffraction limit while still maintaining a sizeable propagation length. The geometric dependence of the mode characteristics of this structure is analyzed in detail, showing strong confinement and low loss with propagation lengths exceeding 14 mm at normalized mode areas of 1.72 × 10−2. By using the FEM method (Comsol), the guiding properties of the hybrid terahertz surface plasmon polariton (HTSPP) waveguide are numerically analyzed at the THz frequency, and a combination of double-structured comparisons of the best features of the terahertz plasmonic waveguide is made. Depending on the height used and how the mode confinement is measured, various modal designs, such as double microwire structures, are developed. The structures indicate that we verified the possibility of low attenuation loss of hybrid THz plasmonics propagation. The effective mode area Aeff, energy distribution, and propagation length Lp versus height for waveguides with Si microwire and SiO2 are shown. The numerical calculation results reveal a potential for use in applications such as optical force in trapping and transporting biomolecules, and in high-density integrated circuits.  相似文献   

11.
Ikeda K  Fainman Y 《Optics letters》2006,31(23):3486-3488
We derive an equation that describes the nonlinear operation of a Fabry-Perot resonator with a large group index waveguide. Specifically, a silicon photonic crystal microcavity with two-photon-excited free carrier nonlinearity and Kerr nonlinearity is assumed. The equation clearly explains the bistability of the device and the reduction of the required pump energy for a specific nonlinear phase shift at an appropriate phase detuning from the resonance. We present a simple procedure to predict the required optical pump energy for the modulation and the resulting modulation depth by use of the equation and the device parameters.  相似文献   

12.
Photonic crystal slab consisting of square lattice of Si nanopillars sandwiched between two low-refractive-index silver layers was fabricated. Transmittance spectra (TE polarization and [01] direction of the lattice) displaying clear photonic band gap (PBG) dip were obtained. Missing row and reduced diameter row linear defects were introduced into the lattice. Transmittance studies of this system for TE polarization suggest that both linear defects can work as reduced-index waveguides, a spectral feature assigned to the guided mode supported by the missing row being observed.  相似文献   

13.
In this paper, the design and analysis of an ultracompact coupler based on a hybrid silicon plasmonic waveguide (HSPW) is proposed and its coupling and crosstalk characteristics have been theoretically investigated for the development of optical interconnects that can be realized using well-established complementary metal-oxide-semiconductor-compatible fabrication techniques. To determine the minimum horizontal separation distance and efficient coupling length for the designed coupler, the symmetric and antisymmetric supermodes are obtained and their characteristics are studied at a wavelength of 1.55 μm. Efficient light coupling is exhibited by the HSPW coupler with 75 % of power transfer between the two HSPWs with ultrashort coupling length of 2.14 μm when the separation distance is 50 nm. Further, it is shown that the crosstalk is significantly reduced with the insertion of metallic strip between the two HSPWs for realizing highly dense integrated plasmonic circuits.  相似文献   

14.
We demonstrate theoretically the existence of one-way electromagnetic modes in a waveguide formed between a semi-infinite photonic crystal structure and a semi-infinite metal region under a static magnetic field. Such a waveguide provides a frequency range where only one propagating direction is allowed. In this frequency range, disorder-induced scattering is completely suppressed. Such a waveguide also modifies the basic properties of waveguide-cavity interaction.  相似文献   

15.
Partial bandgap characteristics of parallelogram lattice photonic crystals are proposed to suppress the radiation modes in a compact dielectric waveguide taper so as to obtain high transmittance in a large wavelength range. Band structure of the photonic crystals shows that there exists a partial bandgap, The photonie crystals with partial bandgap are then used as the cladding of a waveguide taper to reduce the radiation loss efficiently. In comparison with the conventional dielectric taper and the complete bandgap photonic crystal taper, the partial bandgap photonic crystal taper has a high transmittance of above 85% with a wide band of 170 nm.  相似文献   

16.
Hong Jun Shen  Qing Lan Zhang 《Optik》2011,122(13):1174-1178
We report a low-loss photonic crystal slab waveguide formed by deforming the innermost circle air holes in the conventional photonic crystal slab waveguide into elliptical ones. We obtain the photonic bands and group index of guided modes in this photonic crystal waveguide by guided-mode expansion method and investigate the dependence of photonic bands and group index of guided modes on the parameters of the innermost elliptical air holes. The group velocity and group velocity dispersion of this waveguide strongly depend on the innermost elliptical air holes. Photonic crystal slab waveguide with the optimum innermost elliptical air holes possesses a wider single mode region below the light line, in which light can easily propagate without intrinsic loss. At the same time, the guided mode supported by this waveguide has nearly constant group velocity and vanishing group velocity dispersion in a 3-5 nm bandwidth.  相似文献   

17.
18.
A two-dimensional (2D) photonic crystal waveguide in the \Gamma--K direction with triangular lattice on a silicon-on-insulator (SOI) substrate in the near-infrared band is fabricated by the combination of electron beam lithography and inductively coupled plasma etching. Its transmission characteristics are analysed from the stimulated band diagram by the effective index and the 2D plane wave expansion (PWE) methods. In the experiment, the transmission band edge in a longer wavelength of the photonic crystal waveguide is about 1590\,nm, which is in good qualitative agreement with the simulated value. However, there is a disagreement between the experimental and the simulated results when the wavelength ranges from 1607 to 1630\,nm, which can be considered as due to the unpolarized source used in the transmission measurement.  相似文献   

19.
We report on the evolution of the surface plasmon (SP) and waveguide mode (WM) as the core thickness is varied in InGaAs slab waveguides covered by metallic sub-wavelength slit arrays. By comparing transmission spectrum in the near-infrared region with numerical simulations, transmission dips were assigned to resonant excitations of either SPs or WMs. As the core thickness was smaller than the SP penetration depth, the resonance energy exhibits a blue shift, which scales with the field intrusion into the substrate region. For the core thickness of 400 nm supporting both the WM and SP, effective refractive index of the SP is almost constant due to the field decay within the InGaAs region, which is different to the case of the WM.  相似文献   

20.
A different silicon photonic wire waveguide is proposed, which uses multiple thin cladding layers in order to reduce the index contrast between core and cladding interface. The reduced index contrast in the proposed waveguide has led to reduction in the scattering losses by 37% as compared to silicon wire waveguide for 400 nm × 220 nm waveguide dimension. The proposed waveguide has shown significant reduction in bending losses. It offers the bending loss of 0.0118 dB at the radius of 1 μm and 0.0063 dB for a radius of 2 μm at 1.55 μm wavelength as compared to 0.086 and 0.013 dB at the radius of 1 and 2 μm, respectively, offered by silicon photonic wire waveguide at 1.5 μm wavelength. The use of polymer material as top cladding layer resulted in decreasing the sensitivity of effective index against temperature for the designed waveguide by a factor of 2 as compared to silicon wire waveguide.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号