首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
During the long course of evolution, nature has learnt how to exploit quantum effects. In fact, recent experiments reveal the existence of quantum processes whose coherence extends over unexpectedly long time and space ranges. In particular, photosynthetic processes in light-harvesting complexes display a typical oscillatory dynamics ascribed to quantum coherence. Here, we consider the simple model where a dimer made of two chromophores is strongly coupled with a quasi-resonant vibrational mode. We observe the occurrence of wide oscillations of genuine quantum correlations, between electronic excitations and the environment, represented by vibrational bosonic modes. Such a quantum dynamics has been unveiled through the calculation of the negativity of entanglement and the discord, indicators widely used in quantum information for quantifying the resources needed to realize quantum technologies. We also discuss the possibility of approximating additional weakly-coupled off-resonant vibrational modes, simulating the disturbances induced by the rest of the environment, by a single vibrational mode. Within this approximation, one can show that the off-resonant bath behaves like a classical source of noise.  相似文献   

2.
Nuclei, like more familiar mechanical systems, undergo simple vibrational motion. Among these vibrations, sound modes are of particular interest since they reveal important information on the effective interactions among the constituents and, through extrapolation, on the bulk behaviour of nuclear and neutron matter. Sound wave propagation in nuclei shows strong quantum effects familiar from other quantum systems. Microscopic theory suggests that the restoring forces are caused by the complex structure of the many-Fermion wavefunction and, in some cases, have no classical analogue. The damping of the vibrational amplitude is strongly influenced by phase coherence among the particles participating in the motion.  相似文献   

3.
《Physics letters. A》2014,378(30-31):2195-2200
We study the ballistic phonon transport and thermal conductance of six low-lying vibration modes in quantum wire modulated with quantum dot at low temperatures. A comparative analysis is made among the six vibrational modes. The results show that the transmission rates of the six vibrational modes relative to reduced frequency display periodic or quasi-periodic oscillatory behavior. Among the four acoustic modes, the thermal conductance contributed by the torsional mode is the smallest, and the thermal conductances of other acoustic modes have adjacent values. It is also found that the thermal conductance of the optical mode increases from zero monotonously. Moreover, the total thermal conductance in concavity-shaped quantum structure is lower than that in convexity-shaped quantum structure. These thermal conductance values can be adjusted by changing the structural parameters of the quantum dot.  相似文献   

4.
We report the observation of giant quantum coherence effects in the localized modes of ionized hydrogen in synthetic fluorite. Infrared free induction decay experiments on the substitutional H- center show dramatic modulations at negative delay times due to interference between multiple vibrational levels. Spectrally resolving the degenerate four wave mixing signal allows unambiguous assignments of the participating vibrational states. The dependence of the signal intensity upon the delay path between the exciting free electron laser pulses can be accounted for in terms of the resonant third order polarization with a common dephasing time for the excited states.  相似文献   

5.
《中国物理 B》2021,30(6):60311-060311
Vibrational degrees of freedom in trapped-ion systems have recently been gaining attention as a quantum resource,beyond the role as a mediator for entangling quantum operations on internal degrees of freedom, because of the large available Hilbert space. The vibrational modes can be represented as quantum harmonic oscillators and thus offer a Hilbert space with infinite dimensions. Here we review recent theoretical and experimental progress in the coherent manipulation of the vibrational modes, including bosonic encoding schemes in quantum information, reliable and efficient measurement techniques, and quantum operations that allow various quantum simulations and quantum computation algorithms. We describe experiments using the vibrational modes, including the preparation of non-classical states, molecular vibronic sampling, and applications in quantum thermodynamics. We finally discuss the potential prospects and challenges of trapped-ion vibrational-mode quantum information processing.  相似文献   

6.
Using the technique of stimulated Raman adiabatic passage (STIRAP) we have coherently transferred ultracold (87)Rb(2) Feshbach molecules into a more deeply bound vibrational quantum level. Our measurements indicate a high transfer efficiency of up to 87%. Because the molecules are held in an optical lattice with not more than a single molecule per lattice site, inelastic collisions between the molecules are suppressed and we observe long molecular lifetimes of about 1 s. Using STIRAP we have created quantum superpositions of the two molecular states and tested their coherence interferometrically. These results represent an important step towards Bose-Einstein condensation of molecules in the vibrational ground state.  相似文献   

7.
A first principles calculation of the vibrational modes of Pb(111) thin films of thickness up to 14 layers reveals the existence of localized vibrational modes at the slab's surface. Both longitudinal and transverse surface modes localized a few atomic layers are found at energies above the bulk bands. The frequency of these modes presents a bilayer oscillatory behavior. The electron-phonon interaction of the slab's quantum well states is also calculated. We find a large (small) deformation potential for the lowest unoccupied (highest occupied) quantum well state. Its absolute value is also oscillatory with the number of layers.  相似文献   

8.
Vibrational coupling between different kinds of molecules in liquid mixture is studied by multiplex coherent anti‐Stokes Raman spectroscopy (CARS). To identify vibrational coherence, fs‐probe with high time resolution and narrowband‐probe with high spectral resolution are adopted in CARS experiments. Using liquid nitromethane (NM) mixed with organic dye IR780 perchlorate as the sample, we can clearly observe the interference between different vibrational modes. The intermolecular vibrational interaction between NM and IR780 molecules results in the vibrational coherence transfer (VCT) in the form of a change of phase correlation. Compared with symmetric bending vibration of NO2, coherence transfer is found to be easier to take place between C―N bond of NM and vibrations of IR780, which indicates the selectivity of intermolecular vibrational interaction. The selectivity is deduced to be related to the coordination between intramolecular and collective motion of molecules. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

9.
Time-and frequency-resolved broadband transient grating(BB-TG) spectroscopy is used to distinguish between ground-and excite-electronic state vibrational coherence at different wavelengths. Qualitative theoretical analysis using double-sided Feynman diagrams indicates that a superposition of ground and excited state vibrational coherence are contained in the ground state absorption(GSA) and stimulated emission(SE) overlap band, while only the excited state is contained in the excited state absorption(ESA) band. The TG experiment, in which a white light continuum(WLC) is adopted as a probe, is conducted with rhodamine101(Rh101~+) as the target molecule. Fourier analysis of TG dynamics in a positive delay time range at specific wavelengths enables us to distinguish the low-frequency vibrational modes of Rh101 in ground-and excite-electronic states.  相似文献   

10.
We point out that the massive modes of closed superstring theories may play a crucial role in the last stages of black hole evaporation. If the Bekenstein-Hawking entropy describes the true degeneracy of a black hole — implying loss of quantum coherence and the unitary evolution of quantum states-it becomes entropically favorable for an evaporating black hole to make a transition to a state of massive string modes. This in turn may decay into massless modes of the string (radiation) avoiding the naked singularity exposed by black hole evaporation in the semiclassical picture. Alternatively, quantum coherence may be maintained if the entropy of an evaporating black hole is much larger than that given by the Bekenstein-Hawking formula. In that case, however, the transition to massive string modes is unlikely. String theories might thus resolve the difficulty of the naked singularity, but it appears likely that they will still involve loss of quantum coherence.This essay received the first award from the Gravity Research Foundation for the year 1986 — Ed.  相似文献   

11.
The mixed quantum-classical method based on the Bohmian formulation of quantum mechanics [J. Chem. Phys. 113, 9369 (2000)]] is applied to study the process of vibrational decoherence of I2 in a dense helium environment. Specifically, the revival of vibrational wave packets, detectable by pump-probe spectroscopy, is a quantum phenomena which depends sensitively on the coherence between the vibrational levels excited by the pump pulse. The time-dependent pump-probe revival signal is a very sensitive way of detecting vibrational dephasing induced by an environment. The very good agreement between previous experimental signals and calculations presented in ths work confirms the theoretical approach and provides a promising basis for the prediction and interpretation of future experiments exploiting quantum revivals as a probe of decoherence.  相似文献   

12.
Femtosecond multiphoton pump-probe photoionization is applied to helium nanodroplets doped with rubidium (Rb). The yield of Rb+ ions features pronounced quantum interference (QI) fringes demonstrating the coherence of a superposition of electronic states on a time scale of tens of picoseconds. Furthermore, we observe QI in the yield of formed RbHe exciplex molecules. The quantum interferogram allows us to determine the vibrational structure of these unstable molecules. From a sliced Fourier analysis one cannot only extract the population dynamics of vibrational states but also follow their energetic evolution during the RbHe formation.  相似文献   

13.
This study highlights the theoretical investigation of quantum coherence in mechanical oscillators and its transfer between the cavity and mechanical modes of an optomechanical system comprising an optical cavity and two mechanical oscillators that,in this study, were simultaneously coupled to the optical cavity at different optomechanical coupling strengths. The quantum coherence transfer between the optical and mechanical modes is found to depend strongly on the relative magnitude of the two optomechanical couplings. The laser power, decay rates of the cavity and mechanical oscillators, environmental temperature, and frequency of the mechanical oscillator are observed to significantly influence the investigated quantum coherences. Moreover,quantum coherence generation in the optomechanical system is restricted by the system's stability condition, which helps sustain high and stable quantum coherence in the optomechanical system.  相似文献   

14.
15.
方励之  区智 《物理学报》1966,22(4):471-486
本文讨论了强耦合情况的、即电子的静态畸变能量大于晶格或分子振动量子能量的情况的动力学Jahn-Teller效应。我们发展了一种适用于强耦合情况的微扰方法,在其中将本征值及本征函数依照电子振动耦合系数的倒数或振动量子能量与静态畸变能量之比展开成幂级数,具体讨论了Oh点群中的Г8态,求得了电子振动能级。区别于弱耦合情况的特点主要在于:1)虽然并不发生静态畸变,但是振动模的简并性及频谱却都发生了变化;2)如果与电子相耦合的振动模是“调谐”的,则电子及晶格振动的集体运动模将出现,这个理论能被用来解释Weinstock等人所做的关于TcF6及ReF6的红外光谱以及Raman光谱的实验结果。  相似文献   

16.
Structures with CdS quantum dots produced by the Langmuir–Blodgett (LB) technique were investigated by Raman, IR, and UV spectroscopies. The confinement effect of longitudinal optical (LO) phonons in CdS quantum dots was investigated by Raman spectroscopy. Surface vibrational modes of CdS quantum dots were observed in IR spectra. It was shown experimentally that the frequency of the surface vibrational modes depends on the properties of the surrounding media. An average size of CdS quantum dots of about 3–6.4 nm was obtained from the analysis of UV measurements. Received: 1 February 1999 / Accepted: 1 April 1999 / Published online: 19 May 1999  相似文献   

17.
Classical trajectory calculations on a realistic potential for the stretching vibrations of the water molecule are used to demonstrate the existence of stable local vibrational modes, which occur in degenerate pairs. The proportion of phase space occupied by such modes increases with increasing energy, with a clearly characterized (0, 2) local state in a local quantum number assignment. It is argued that quantum mechanical corrections will lead to a local mode splitting which is predicted to decrease in magnitude along any given stretching vibrational progression, and to be larger for a given quantum state of D2O than for H2O.  相似文献   

18.
Ta?gιn  M. E.  Oktel  M. ?.  You  L.  Müstecaplιo?lu  ?. E. 《Laser Physics》2010,20(3):700-708
We adopt the coherence and built-in swap mechanism in sequential superradiance as a tool for obtaining continuous-variable (electric/magnetic fields) quantum entanglement of two counter-propagating pulses emitted from the two end-fire modes. In the first-sequence, end-fire modes are entangled with the side modes. In the second sequence, this entanglement is swapped to in between the two opposite end-fire modes. Additionally, we also examine the photon number correlations. No quantum correlations is observed in this variable.  相似文献   

19.
We performed femtosecond time-resolved coherent anti-Stokes Raman scattering(fs-CARS) measurements on liquid toluene and PVK film.For both samples,we selectively excited the CH stretching vibrational modes and observed the expected quantum beat signals.The frequency of the well-defined beats is in good agreement with the energy difference between the two simultaneously excited modes,which demonstrates that a coherent coupling between the vibrational modes of the C-H chemical bonds exists at the different positions of the molecules.The dephasing times of the excited modes are obtained simultaneously.  相似文献   

20.
杜鑫  何兴  刘玉强  王英惠  杨延强 《中国物理 B》2012,21(3):34210-034210
We performed femtosecond time-resolved coherent anti-Stokes Raman scattering (fs-CARS) measurements on liquid toluene and PVK film. For both samples, we selectively excited the CH stretching vibrational modes and observed the expected quantum beat signals. The frequency of the well-defined beats is in good agreement with the energy difference between the two simultaneously excited modes, which demonstrates that a coherent coupling between the vibrational modes of the C-H chemical bonds exists at the different positions of the molecules. The dephasing times of the excited modes are obtained simultaneously.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号