首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Yasser B. Saddeek 《哲学杂志》2013,93(26):2305-2320
Lead vanadate glasses of the system xMoO3–50V2O5–(50-x)PbO (0 ≤ x ≤ 25 mol. %) were synthesized and studied by FTIR and ultrasonic spectroscopy and differential scanning calorimetry to investigate the role of MoO3 content on their atomic structure. The elastic properties and Debye temperatures of the glasses were investigated using sound velocity measurements at 4 MHz. The activation energy for the glass transition was derived from the dependence of the glass-transition temperature (Tg ) on the heating rate. Similarly, the activation energy of the crystallization process was also determined. According to the IR analysis, the vibrations of the vanadate structural units are shifted towards higher wavenumbers on the formation of bridging oxygens. The change of density and molar volume with MoO3 content reveals that the molybdinate units are less dense than the lead oxide units. The observed compositional dependence of the elastic moduli is interpreted in terms of the effect of MoO3 on the coordination number of the vanadate units. A good correlation was observed between the experimentally determined elastic moduli and those computed according to the Makishima–Mackenzie model. It is assumed that MoO3 plays the role of a glass former by increasing the activation energy for the glass transition and the activation energy for crystallization and by increasing both the thermal stability and the glass formation range of the vanadate glasses.  相似文献   

2.
Rahul Vaish 《哲学杂志》2013,93(19):1555-1564
Transparent glasses in the system 3BaO–3TiO2–B2O3 (BTBO) were fabricated via the conventional melt-quenching technique. The as-quenched samples were confirmed to be non-crystalline by differential thermal analysis (DTA). Thermal parameters were evaluated using non-isothermal DTA experiments. The Kauzmann temperature was found to be 759 K based on heating-rate-dependent glass transition and crystallization temperatures. A theoretical relation for the temperature-dependent viscosity is proposed for these glasses and glass-ceramics.  相似文献   

3.
《Current Applied Physics》2020,20(11):1207-1216
A series of Dy3+ doped zinc-aluminoborosilicate glasses with chemical composition 30SiO2-(30-x) B2O3–10Al2O3–15NaF–15ZnF2-xDy2O3 (x = 0, 0.5, 0.7, 1.0 and 1.5 mol %) were prepared by conventional melt-quenching method. Structural and optical properties of the glasses were analyzed through XRD, FTIR, UV–Visible–NIR and luminescence studies. Gamma radiation shielding parameters were obtained using PSD software. Nephelauxetic ratio (β) and bonding parameters (δ) calculated using absorption spectrum shows the decreasing ionic nature of the Dy ions. Judd-Oflet parameters (Ω2, Ω4 and Ω6) obtained shows the covalency and asymmetric nature of dysprosium ions. The luminescence properties shows that Dy3+ doped glasses have two strong intense emission at blue (482 nm) and yellow (575 nm) region. Branching ratio and stimulated emission cross section calculated suggests the glasses suitability to act as lasing material. CIE colour coordinates and its colour correlated temperature (CCT) for the glasses were estimated and found that these prepared glasses lie in the warm white light region.  相似文献   

4.
Bi2O3 doped 65SiO2–20Al2O3–15La2O3 (in mole%) glasses were prepared by the traditional melting–quenching method. The spectroscopic properties and mechanism of NIR broadband emission in these glasses were investigated in this work. Three excitation wavelengths of 500, 700 and 800 nm were used to test emission spectra. The emission band under 500 nm excitation can be regarded as combination of emission bands under 700 and 800 nm excitation. 2.0 mole% is found to be the optimal Bi2O3 doping level in this glass. Under 500 nm excitation its emission peak, FWHM and lifetime of emission band are 1160 nm, 300 nm and 569 μs, respectively. The longest fluorescent lifetime reaches 620 μs under 700 nm excitation. The valence state of Bi in these glasses is suggested to be lower than +3 by X-ray photoelectron spectroscopy. With the help of energy matching, we infer that both Bi0 and Bi+ centers are responsible for the NIR fluorescence of Bi2O3 doped 65SiO2–20Al2O3–15La2O3 glass.  相似文献   

5.
Binary semiconducting glasses of xV2O5·(1−x)B2O3 system with x ranging from 0.6 to 0.9 have been investigated to elucidate their electronic conduction. The values of conductivity and activation energy of these glasses are in good agreement with previous results on most V2O5-based glasses. Arguments for the small-polaron as the charge carrier in V2O5B2O3 glasses are presented.  相似文献   

6.
PbO–Bi2O3–B2O3 glasses containing small concentrations of Fe2O3 (0–1 mol%) were subject to dielectric studies (dielectric constant ε′; loss tan δ; and ac conductivity σ ac) over a wide range of frequency and temperature. From spectroscopic (infrared, optical absorption and ESR spectra) and magnetic susceptibility studies, variations in these properties with dopant ion concentration were analyzed in terms of different oxidation states and iron ion environment in the glass network.  相似文献   

7.
This paper deals with the investigation of a variety of physical properties including dielectric constant (over a wide range of frequency and temperature), optical absorption, luminescence, electron spin resonance (ESR) and infrared spectra of a TiO2-doped lead molybdenum borate glass system. The composition chosen for the study is 30PbO–4MoO3–(66–x)B2O3:xTiO2 (with x ranging from 0.2 to 2.0). Quantitative analysis of the results of this study shows that, when the content of TiO2 is around 0.8 mol%, the titanium ions exist predominantly in the tetravalent state and occupy substitutional positions in the glass network. A substantial increase in the insulating strength of these glasses on TiO2 doping has also been observed. When the concentration of TiO2 is increased beyond 0.8 mol%, it is observed that titanium ions exist primarily in the Ti3+ state and molybdenum ions in the Mo5+ state; analysis of the results further suggests that both of these ions participate in the depolymerization of the glass network.  相似文献   

8.
The elastic properties and Debye temperatures of xB2O3–70TeO2–(30–x)WO3, (0 ≤ x ≤ 30 mol%) glasses have been investigated using sound velocity measurements at 4 MHz. Ultrasonic and thermal parameters, combined with the results of IR spectroscopic analyses, were employed to explore the effect of B2O3 on the structure of tungsten–tellurite glasses. According to IR analysis, there is competition between WO6 and TeO4 units to form BO4 units, and the vibrations of the tellurite structural units are shifted towards lower wavenumbers on the formation of non-bridging oxygens. It is assumed that B2O3 acts as a modifier by decreasing the glass-transition temperature T g and increasing both the thermal stability and glass formation range of the tellurite glasses. The change in density and molar volume with B2O3 content reveals that the borate units are less dense than the tellurite structural units. The observed compositional dependence of elastic moduli is interpreted in terms of the effect of B2O3 on the coordination number of the tellurite units. A good correlation was observed between experimentally determined elastic moduli and those computed with the Makishima–Mackenzie model.  相似文献   

9.
Optically clear glasses in the ZnO–Bi2O3–B2O3 (ZBBO) system were fabricated via the conventional melt-quenching technique. Dielectric constant and loss measurements carried out on ZBBO glasses unraveled nearly frequency (1 kHz–10 MHz)-independent dielectric characteristics associated with significantly low loss (D?=?0.004). However, weak temperature response was found with temperature coefficient of dielectric constant 18?±?4 ppm °C?1 in the 35–250 °C temperature range. The conduction and relaxation phenomena were rationalized using universal AC conductivity power law and modulus formalism respectively. The activation energy for relaxation determined using imaginary parts of modulus peaks was 2.54 eV which was close to that of the DC conduction implying the involvement of similar energy barriers in both the processes. Stretched and power exponents were temperature dependent. The relaxation and conduction in these glasses were attributed to the hoping and migration of Bi3+ cations in their own and different local environment.  相似文献   

10.
M.S. Gaafar  S.Y. Marzouk  H. Mady 《哲学杂志》2013,93(26):2213-2224
Glasses in the 90Bi2O3–(10?x)Er2O3?xPbO (x = 3, 5, 7, 9 and 10 mol%) system have been prepared by the melt-quenching technique. Elastic properties and FT-IR spectroscopic studies have been employed to study the role of PbO in the structure of the investigated system. Elastic properties and Debye temperature were recorded using sound wave velocity measurements at 4 MHz at room temperature. The results showed that density increased and molar volume decreased, while both sound velocities increased with an increase in x. Infrared spectra of the glasses revealed that the bismuthate network is affected by an increase in PbO content. The results are interpreted in terms of the conversion of [BiO6] into [BiO3] structural units, indicating that Pb ions have been substituted for erbium ions as tetrahedral network formers. The elastic moduli increased with increasing PbO content due to the increased average bond strength and degree of connectivity, as a direct effect of the increase in [BiO3] structural units.  相似文献   

11.
A continuous-wave (CW) YAG laser (power: 0.75–0.9 J/s, irradiation time: 15 s–15 min) with a wavelength of 1064 nm is irradiated to 11.1Sm2O3·44.4BaO·44.4B2O3 glass, and the formation of β-BaB2O4 (β-BBO) crystalline dots with a diameter of 30–150 μm is confirmed from micro-Raman spectra. β-BBO crystals with around 200 μm length grow towards the interior of the glass. The incorporation of Sm3+ into β-BBO crystalline dots is suggested from micro-Raman and fluorescence spectra. The second harmonic generation is detected from the array (10×10=100 dots) of β-BBO crystalline dots, indicating that each crystalline dot formed by YAG laser irradiation is a nonlinear optical crystal. CW YAG laser irradiation to glass with Sm3+ ions is a nice technique for a spatially controlled crystal growth.  相似文献   

12.
Europium doped calcium pyrovanadate nanoparticles Ca2V2O7:Eu3+, having a size of 57–63 nm, were synthesized using combustion process. Structure, morphological and optical properties of nanophosphors have been characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), fluorescence spectrometry (PL) and Fourier transform infra-red (FT-IR) spectroscopy. X-ray studies shows that a pure triclinic Ca2V2O7 phase was obtained at 900 °C temperature. The red emission observed at 620 nm upon excitation at 305 nm is due to hypersensitive transition 5D0 → 7F2 of luminescent activator Eu3+ location at a site with no inversion symmetry in Ca2V2O7 crystal lattice. High luminescent intensity and easy synthesis technique make this red phosphor a promising candidate for application as luminescent materials.  相似文献   

13.
14.
Four glasses in ZnO–SiO2–B2O3 ternary system were prepared by the melt quenching method with the objective of optimizing sub-nanosecond emission over the UV region of zinc borosilicate glasses used in superfast scintillators. The effect of vanadium addition and heat treatment on phase formation, microstructure and photoluminescence properties of the glasses was characterized by means of DTA, XRD, SEM and fluorescence spectrophotometer. Vanadium contributed to the near-band-edge emission in two ways, by introducing donor levels in the energy band of ZnO particles and by facilitating the precipitation of ZnO and willemite crystals. Furthermore, nucleation of willemite and zinc oxide phases, which are both the origins of the intense emission bands in the UV region, was facilitated with increasing either the time or temperature of heat treatments. Photoluminescence spectra showed the elimination of the visible emission band which is favorable in scintillating glasses.  相似文献   

15.
Glasses xLi2O–(50-x)(MoO3)2–50P2O5 with x = 10, 20, 30, and 40 mol% were prepared and their optical and electrical properties were investigated. Analysis of the IR spectra revealed that the Li+ ions act as a glass modifier that enter the glass network by breaking up other linkages and creating non-bridging oxygens in the network. The optical absorption edge of the glasses was measured for specimens in the form of thin blown films and the optical absorption spectra of those were recorded in the range 200–800 nm. From the optical absorption edges studies, the optical band gap (E opt) and the Urbach energy (E e) values have been evaluated by following the available semi-empirical theories. The linear variation of (αhν)1/2 with , is taken as evidence of indirect interband transitions. The E opt values were found to decrease with increasing Li2O content by causing increase in the number of non-bridging oxygens in network. The Urbach tail analysis gives the width of localized states between 0.48 and 0.74 eV.  相似文献   

16.
17.
MgO-Li2O-Bi2O3-B2O3 glasses were prepared by melt quench technique and analyzed with the help of refractive index, optical, IR, and Raman spectroscopy studies. The present glasses exhibited the mixed modifier effect (MME) through refractive index change non-linearly. The variation in the indirect optical band gap and band tailing in MgO content have been discussed with the glass structure. Based on the obtained values of αo2-, optical basicity, and interaction parameters, the present glasses were termed as very semi covalent acidic oxide glasses. Raman and Infrared spectra reveal that these glasses are built up of BO3, BO4 units of B2O3 and octahedral [BiO6], pyramidal [BiO3] units of Bi2O3 were observed.  相似文献   

18.
PbO–As2O3 glasses mixed with different concentrations of TiO2 (ranging from 0 to 1.0 mol%) were crystallized. The samples were characterized by X-ray diffraction, scanning electron microscopy and energy dispersive spectroscopy (EDS) techniques. Studies were extended to optical absorption, IR, ESR, luminescence and magnetic susceptibility on these samples. The X-ray diffraction studies reveal the presence of Pb3O4, Ti(As2O7), Pb(As2O6), Pb3(AsO4)2 PbTi3O7 and Ti2O3 crystal phases. The optical absorption studies together with ESR and magnetic susceptibility measurements indicated that the titanium ions exist in both Ti3+ and Ti4+ states in all the samples and there is an increase in titanium ions in the trivalent state with increasing concentration of nucleating agent TiO2. The quantitative analysis of these results indicated that there is a growing degree of disorder in the glass network with increasing concentration of the crystallizing agent. The luminescence studies indicated that the samples crystallized with low concentrations of TiO2 show high luminescence efficiency in the visible region.  相似文献   

19.
The mixed alkali borate xNa2O–(30−x)K2O–70B2O3 (5≤x≤25) glasses doped with 1 mol% of manganese ions were investigated using EPR and optical absorption techniques as a function of alkali content to look for ‘mixed alkali effect’ (MAE) on the spectral properties of the glasses. The EPR spectra of all the investigated samples exhibit resonance signals which are characteristic of the Mn2+ ions. The resonance signal at g≅2.02 exhibits a six line hyperfine structure. In addition to this, a prominent peak with g≅4.64, with a shoulder around g≅4.05 and 2.98, was also observed. From the observed EPR spectrum, the spin-Hamiltonian parameters g and A have been evaluated. It is interesting to note that some of the EPR parameters do show MAE. It is found that the ionic character increases with x and reaches a maximum around x=20 and thereafter it decreases showing the MAE. The number of spins participating in resonance (N) at g≅2.02 decreases with x and reaches a minimum around x=20 and thereafter it increases showing the MAE. It is also observed that the zero-field splitting parameter (D) increases with x, reaches a maximum around x=15 and thereafter decreases showing the MAE. The optical absorption spectrum exhibits a broad band around ∼20,000 cm−1 which has been assigned to the transition 6A1g(S)→4T1g(G). From ultraviolet absorption edges, the optical bandgap energies and Urbach energies were evaluated. It is interesting to note that the Urbach energies for these glasses decrease with x and reach a minimum around x=15. The optical band gaps obtained in the present work lie in the range 3.28–3.40 eV for both the direct and indirect transitions. The physical parameters of all the glasses were also evaluated with respect to the composition.  相似文献   

20.
Trivalent neodymium doped multi-component lead borate titanate aluminumfluoride (LBTAFNd) glasses were prepared and characterized as a function of Nd3+ ions concentration through optical absorption, NIR luminescence and decay measurements. The intensity (Ω2,4,6) and other radiative parameters were determined within the frame work of Judd–Ofelt theory. The intensities of absorption bands were expressed in terms of experimental oscillator strengths. Reasonably small root mean square deviation of ±0.384×10?6 obtained between the experimental and calculated oscillator strengths indicates the validity of intensity parameters. Upon 805 nm laser excitation, the NIR emissions at 0.92 μm (4F3/24I9/2), 1.07 μm (4F3/24I11/2) and 1.35 μm (4F3/24I13/2) were observed. The spectroscopic quality factor has been determined from the Ω4 and Ω6 intensity parameters as well as the intensities of emission bands centered at 1.07 and 1.35 μm. The decay curves of the 4F3/2 excited state were recorded by monitoring the emission and excitation wavelengths at 1.07 μm and 805 nm, respectively. The decay curves exhibit single exponential behavior for all the glasses. The laser characteristic parameters of 4F3/24I11/2 (1.07 μm) transition were determined and compared with other reported glasses.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号