首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Laser melting of a moving slab is considered, and the temperature field and the phase-change in the heated region are simulated in-line with experimental conditions. The influence of laser power intensity parameter (β) and laser scanning speed on temperature field and melt depth is examined. An experiment is carried out to compare the melt layer thickness with the predictions. It is found that increase in laser power intensity parameter enhances melt size along the x-axis, despite the fact that peak temperature in the melt-pool reduces. This is more pronounced at a low laser scanning speed (0.05 m/s).  相似文献   

2.
The flow field developed in the laser produced melt pool is investigated and the influence of the Marangoni effect on temperature field is examined. The experiment is carried out to trace the solidified melt pool geometry and the heating is simulated in line with the experimental conditions to predict the melt size in the irradiated region. In the simulations, the control volume approach is used incorporating the Marangoni effect. The enthalpy-porosity method is adopted to account for the phase change in the irradiated region. The study is extended to include the influence of the laser intensity parameter (β) on temperature and the flow field in the melt pool. It is found that the melt pool geometry and the flow field in the melt pool is influenced by the laser intensity parameter. In this case, the number of circulation cell formed in the melt pool is doubled for the intensity parameter 0.4≤β≤0.6. The predictions of the melt pool geometry agree well with the experimental data.  相似文献   

3.
Case hardening of a carbon steel, Armco Iron, an alloyed steel and a high-speed steel was carried out with a CO2 laser beam. The indispensibility of an absorptive coating in the laser heat treatment was established. Four coatings capable of absorbing CO2 laser radiation of a 10.6 μm wave length were examined. The influence of spot size, power and scanning speed on the depth of hardening were studied. Processing at optimal conditions yielded a hardening depth of up to 0.7 mm and a surface hardness of up to 220 Hv.  相似文献   

4.
Laser treated surfaces of the Fe83Si17 alloy and of the coatings prepared on low-carbon steel by laser surface alloying with Ni and Al were investigated by means of Mossbauer spectroscopy. The short range order in the surface layer after irradiation by neodymium laser pulses was found to be similar to that before irradiation. The high quenching rate of a single melt pool after single pulse action seems to be masked by annealing due to the heat produced by successive pulses covering the whole surface. A detailed phase analysis of the coatings prepared by laser surface alloying was done. Seven different phases were found in dependence on chemical composition of alloy coatings and on traverse speed, i.e. the speed of relative motion of sample and the continuous CO2-laser beam.  相似文献   

5.
In this paper, propagation of a Gaussian laser beam through turbulent atmosphere is evaluated numerically. The beam quality factor for the propagated beam has been estimated for different turbulent conditions that are characterized by parameter Cn. The calculations show that the beam quality can be affected dramatically by atmospheric turbulence and the laser beam size and wavelength have major role in the results. Furthermore, the propagation of laser beam in longer distance results in more spatial perturbation of the beam. The results of these calculations and evaluation of beam quality factor M2 can be used for estimating the refractive index structure parameter (or atmosphere turbulent parameter) Cn.  相似文献   

6.
Laser ablation can be achieved by delivering short power pulse with durations much smaller than the heat diffusion time. In this investigation, we are collimating and magnifying a beam from a CO2 laser with a Keplerian telescopic system. Then we study the quality of the cut performed by scanning the beam at a fast speed over an optical fiber just after focusing a well collimated CO2 beam at λ=10.6 μm. It is found that the best results for cutting optical fibers depend upon both the time required in raising matter temperature to the vaporization point and the scanning speed of the CO2 laser beam. Some aspects of the laser beam collimation before focusing is reviewed briefly and results for optical fibers being cleaved at low and fast speed under various conditions are also shown and discussed.  相似文献   

7.
Fe-Al-Si in situ composite coating was fabricated on the surface of ASTM A283Gr.D steel by laser cladding with the preplaced powder. The influence of powder composition, laser power and scanning speed on microstructure, microhardness and wear resistance were investigated in this paper. The results show that Fe-Al-Si in situ composite coating with the good metallurgical bond mainly consists of Fe, SiO2 and Al2Fe3Si4 intermetallic compound. With the increase of laser power and scanning speed, the grain size of coating gets the minimum value. With the increase of laser power and scanning speed, microhardness and wear resistance both get the peak vaule, and their value are three times and 3.5 times those of substrate, respectively. The optimum parameters are followed as: the ratio of the preplaced composite powder: 8:1:1, laser power: 1600 W and scanning speed: 400 mm/min.  相似文献   

8.
Laser texturing is a novel technique that may be used to texture a cold roller in the process of manufacturing high quality steel sheets. With the aim of improving the quality of the textured roller by using a CO2 laser, a new laser beam modulating device is proposed. An optical beam expander with a fast rotating chopper system is designed. The laser pulse is split into two parts by the chopper blades; one is the preheating pulse that is reflected onto optical loop mirrors; the other is the directly transmitted pulse that creates the craters at the preheated spots. The preheating beam focus spot size and position can be adjusted. The focusing characteristics and optical parameter compensation for the flying optics are investigated. The heat transfer and melt process of laser texturing are numerically simulated. The effects of the double pulses on the texturing are analyzed. The effect of preheating the sample ahead of the laser texturing pulse is examined. The surface profile and bump hardness show improvements by using this approach.  相似文献   

9.
This paper presents the results of the measurements and analysis of the influence of laser process parameters on the color obtained. The study was conducted for titanium (Grade 2) using a commercially available industrial pulsed fiber laser. It was determined how a variety of different laser process parameters, such as laser power, the scanning speed of the material, the temperature of the material, the size of the marked area, and the position of the sample, relative to both the focal plane and the center of the working field of the system, affect the repeatability of the colors created. For an objective assessment of color changes, an optical spectrometer and the CIE color difference parameter $\Delta E_{ab}^{*}$ were used. Our paper explains why the tolerance of process parameters highly depends on the specific color. Additionally, a comparison of the results for titanium with those obtained for stainless steel in a previous study is presented. Based on this analysis, a number of necessary modifications are proposed to laser systems commonly used for monochrome marking in order to improve repeatability in color marking.  相似文献   

10.
Nanoscale particles (NP) were observed in a Ni60–Ag–Si3N4–Y2O3 laser alloying (LA) layer on a TA7 titanium alloy, NP usually locate on the grain boundaries, which are able to block the motion of dislocation in a certain extent. Such layer mainly consisted of γ-Ni, TiN, γ-(Fe, Ni), TiAg and lots of amorphous phases. The wear resistance of such layer with laser scanning speed 3 mm/s was better than that of a LA layer with 6 mm/s, which was mainly ascribed to an uniform microstructure and less defect of layer. The high laser scanning speed made the existing time of laser molten pool be shorter than before, favoring the formation of a fine microstructure. However, the defects, such as pores were produced in LA layer (higher scanning speed), decreasing the wear resistance.  相似文献   

11.
Layerwise Laser Melting (LLM) is a layerwise production technique enabling the production of complex metallic parts. In the process a thin layer of powder is first deposited on a base plate. With the energy of a scanning laser beam this layer is melted at selected places, according to a predefined scanning pattern. After scanning, a new layer of powder is deposited on top of the previous layer and selectively melted. This sequence of depositing and scanning is repeated until the complete part is built. The local geometry surrounding the melt pool has a large influence on the processing behavior. For process control issues, this influence must be known and quantified, in order to determine a priori optimal processing conditions and to interpret measured melt pool radiation. In order to study the melt pool behavior, optical process monitoring of LLM has been applied using a high speed near-infrared CMOS camera and a large area silicon photodiode sensor. Data processing rates up to 10 kHz and real-time process monitoring are achieved using image and signal processing on a Field Programmable Gate Array (FPGA). Several case studies will be presented showing that the geometric influencing factors can be studied and quantified by analyzing the melt pool sensor output.  相似文献   

12.
Effects of process variables on laser direct formation of thin wall   总被引:2,自引:0,他引:2  
In this paper, effects of process variables on wall thickness, powder primary efficiency and speed of forming a thin metallic wall in single-pass coaxial laser cladding are investigated, and some resolution models are established and testified experimentally. With some assumptions, each of wall thickness, powder primary efficiency and formation speed can be defined as a function of the process variables. Wall thickness is equal to width of the molten pool created in single-pass laser cladding and determined by laser absorptivity, laser power, initial temperature, scanning speed and thermo-physical properties of clad material. Powder primary efficiency and formation speed are both dependent on an exponential function involving the ratio of melt pool width, which is decided by the process variables, to powder flow diameter. In addition, formation speed is influenced by powder feed rate. In present experiment, a 500 W continual-wave (CW) CO2 laser is used to produce thin-wall samples by single-pass coaxial laser cladding. The experimental results agree well with the calculation values despite some errors.  相似文献   

13.
Nanoporous manganese was fabricated by a three-step process involving high power laser cladding of a homogeneous Cu40Mn60 alloy coatings onto a mild steel substrate, laser remelting for tuning the grain size and the composition homogeneity followed by selectively electrochemical de-alloying for removal of Cu element and formation of nanoporous Mn. The microstructure and homogeneity of the precursor Cu40Mn60 alloys have a significant influence on the evolution of nanopores during selectively electrochemical de-alloying. Laser remelting can significantly refine the microstructure. The second dendrite arm spacing decreases with increasing of laser remelting scanning speed. A SDAS of 1.17 μm was obtained at the laser scanning speed of 133 mm/s. When the remelting scanning speed reaches 100 mm/s, a nanoporous structure with average pore size less than 100 nm was achieved under optimized dealloying electrode current density about 2 mA/cm2. Nanoporous Mn with nanopore sizes ranging from 80 to 130 nm was fabricated by this method. Surface-enhanced Raman scattering characteristics of the nanoporous materials have been investigated. It is found that smaller nanoporosity leads to significant improvements in surface-enhanced Raman scattering.  相似文献   

14.
An experimental investigation with 5 kW CW CO2 laser system was carried out to study the effects of different laser and process parameters on the microstructure and hardness of carbon steel specimen with varying carbon percentage. The laser beam is allowed to scan on the surface of the work piece varying the power (1.1–2.5 kW) and traverse speed (6–15 mm/s) at two different spot sizes using TEM01* mode laser beam. The most hardenable microstructure achieved in case of three grades of carbon steel and the most influencing parameter on the value of hardness are reported. Besides the above study, some multipass operations are also carried out to recommend an appropriate gap between consecutive passes.  相似文献   

15.
A study of porous surfaces having micropores significantly smaller than laser spot on the stainless steel 304L sample surface induced by a picosecond regenerative amplified laser, operating at 1064 nm, is presented. Variations in the interaction regime of picosecond laser pulses with stainless steel surfaces at peak irradiation fluences(Fpk=0.378–4.496 J/cm2) with scanning speeds(v=125–1000 μm/s) and scan line spacings(s=0–50 μm) have been observed and thoroughly investigated. It is observed that interactions within these parameters allows for the generation of well-defined structured surfaces. To investigate the formation mechanism of sub-focus micropores, the influence of key processing parameters has been analyzed using a pre-designed laser pulse scanning layout. Appearances of sub-focus ripples and micropores with the variation of laser peak fluence, scanning speed and scan line spacing have been observed. The dependencies of surface structures on these interaction parameters have been preliminarily verified. With the help of the experimental results obtained, interaction parameters for fabrication of large area homogeneous porous structures with the feature sizes in the range of 3–15 μm are determined.  相似文献   

16.
This study describes a self-consistent theoretical model of simulating diffusion-controlled kinetics on the liquid–solid phase boundary during high-speed solidification in the melt pool after the selective laser melting (SLM) process for titanium matrix composite based on Ti–TiC system. The model includes the heat transfer equation to estimate the temperature distribution in the melt pool and during crystallization process for some deposited layers. The temperature field is used in a micro region next to solid–liquid boundary, where solute micro segregation and dendrite growth are calculated by special approach based on transient liquid phase bonding. The effect of the SLM process parameters (laser power, scanning velocity, layer thickness and substrate size) on the microstructure solidification is being discussed.  相似文献   

17.
Surface modifications have been applied in endosteal bone devices in order to improve the osseointegration through direct contact between neoformed bone and the implant without an intervening soft tissue layer. Surface characteristics of titanium implants have been modified by addictive methods, such as metallic titanium, titanium oxide and hydroxyapatite powder plasma spray, as well as by subtractive methods, such as acid etching, acid etching associated with sandblasting by either AlO2 or TiO2, and recently by laser ablation. Surface modification for dental and medical implants can be obtained by using laser irradiation technique where its parameters like repetition rate, pulse energy, scanning speed and fluency must be taken into accounting to the appropriate surface topography. Surfaces of commercially pure Ti (cpTi) were modified by laser Nd:YVO4 in nine different parameters configurations, all under normal atmosphere. The samples were characterized by SEM and XRD refined by Rietveld method. The crystalline phases αTi, βTi, Ti6O, Ti3O and TiO were formed by the melting and fast cooling processes during irradiation. The resulting phases on the irradiated surface were correlated with the laser beam parameters. The aim of the present work was to control titanium oxides formations in order to improve implants osseointegration by using a laser irradiation technique which is of great importance to biomaterial devices due to being a clean and reproducible process.  相似文献   

18.
The closed-form expressions for the Rayleigh range zR and the M2-factor of truncated laser beams with amplitude modulations (AMs) and phase fluctuations (PFs) in turbulence are derived, and the beam quality is studied by taking the zR and the M2-factor as the characteristic parameters of beam quality. The M2-factor of truncated laser beams with AMs and PFs is always larger than that of truncated Gaussian beams both in free space and in turbulence. However, in turbulence the beam quality of truncated laser beams with AMs and PFs may be better than that of truncated Gaussian beams if the zR is taken as the characteristic parameter of beam quality. For laser beams with AMs and PFs in turbulence, the beam quality expressed in terms of zR is consistent with that in terms of the M2-factor versus the phase fluctuation parameter α, but not versus the intensity modulation parameter σA. The beam quality of truncated laser beams with AMs and PFs is less sensitive to turbulence than that of truncated Gaussian beams. The beam quality of laser beams with smaller α and larger σA is less affected by turbulence than those with larger α and smaller σA.  相似文献   

19.
大功率光纤激光焊焊缝跟踪偏差红外检测方法   总被引:3,自引:0,他引:3       下载免费PDF全文
精确控制激光束使其始终对准并跟踪焊缝是保证激光焊接质量的前提.针对大功率(激光功率10 kW)光纤激光焊接304型不锈钢紧密对接焊缝(间隙为0-0.1 mm),研究一种基于红外热像的焊缝跟踪偏差检测新方法. 采用红外传感高速摄像机摄取焊接区域熔池红外动态热像,分析激光束对准和偏离焊缝中心时的熔池温度分布和红外辐射特性,以熔池匙孔形变参数和热堆积效应参数作为激光束与焊缝中心偏差检测特征值,通过图像识别技术研究和分析特征值与焊缝偏差之间的关系. 激光焊接试验结果表明,熔池匙孔形变参数和热堆积效应参数与焊缝偏差 关键词: 大功率光纤激光焊 焊缝跟踪偏差 红外热像 检测  相似文献   

20.
Direct Laser Fabrication is a promising new manufacturing technology coming from laser cladding process. From a coaxial nozzle, powder is fed through a laser beam on a substrate. The powder melting and solidification processes lead to the fabrication of a part layer by layer. In this work 316L stainless steel powder is used to form laser tracks on a low carbon steel substrate. The layer geometry is an important process characteristic to control the final part of fabrication. This paper presents analytical relationships between the laser tracks geometrical characteristics (width, height, area, penetration depth) and the processing parameters (laser power P, scanning speed V and powder mass flow Qm). Three values of each processing parameters are fixed and so 27 different experiments have been made and analyzed. The validity of these results is discussed studying the correlation coefficient R, the graphical analysis of the residuals and the uncertainty evaluations. Two kinds of models are studied to predict the form and the geometrical characteristics of the single laser tracks cross sections. The first one is an analytical model in which the distribution of the powder in the feed jet is supposed to govern the laser clad geometry. Three distributions are proposed: Gaussian, uniform and polynomial. In the second model the general form of the clad cross section is supposed to be a disk due to the surface tension forces. Analytical relationships are established between the radius and the center of the disk in one hand and the process parameters in the other hand. This way we show that we can reproduce the laser track geometry in all the area experimentally explored.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号