首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.

To improve xylanase productivity fromPenicillium canescens 10–10c culture, an optimization of oxygen supply is required. Because the strain is sensitive to shear forces, leading to lower xylanase productivity as to morphological alteration, vigorous mixing is not desired. The influence of turbine design, agitation speed, and air flow rate on K1a (global mass transfer coefficient, h-1) and enzyme production is discussed. K1a values increased with agitation speed and air flow rate, whatever the impeller, in our assay conditions. Agitation had more influence on K1a values than air flow, when a disk-mounted blade’s impeller (DT) is used; an opposite result was obtained with a hub-mounted pitched blade’s impeller (PBT). Xylanase production appeared as a function of specific power (W/m3), and an optimum was found in 20 and 100 L STRs fitted with DT impellers. On the other hand, the use of a hub-mounted pitched blade impeller (PBT8), instead of a disk-mounted blade impeller (DT4), reduced the lag time of hemicellulase production and increased xylanase productivity 1.3-fold.

  相似文献   

2.
Bioreactor kinetics depend on the dispersion of catalytic parameters within the catalyst particle population. In the conventional determination, reactor performance is assessed from the total turnover rate. In the proposed method the dispersion of turnover rates in reacting immobilized enzyme gel spheres of a continuously stirred tank reactor is evaluated. This more informative method is based on flow-through microfluorimetry and is exemplified with β-galactosidase immobilized on Sepharose 4B, with resorufin-β-d-galactopyranoside as a new fluorogenic substrate. By use of sieved gel fractions, effectiveness factors and Damköhler numbers determined in individual beads can be correlated with integral turnover rates of the reactor.  相似文献   

3.
Abstract

The use of a column switching system for direct injection of samples and of a sample clean-up on reversed phase pre-columns is described. The pre-columns were filled with spherical C-18 silica gel of particle size 30 μm.

Two applications are reported on: (1) the direct injection of serum samples for the simultaneous analysis of nine antiepileptic drugs and metabolites and (2) the determination of phenytoin and of carbamazepine in serum ultra-filtrates.

The purge liquid for the sample clean-up was diluted phosphoric acid, and the eluent mixture for the chromatographic separation was water/acetonitrile. The analytical column (length 12.5 cm) was filled with C-18 silica gel of particle size 5 μm. A gradient elution was chosen for the first application, while the second application was carried out using isocratic chromatographic conditions.  相似文献   

4.
We developed a new entrap-immobilization method, using a gel formationof cellulose acetate and metal (Ti, Zr) alkoxide. Several biocatalysts(-galactosidase, -chymotrypsine, invertase, urease, lipase andSaccharomyces cereviciae) were successfullyentrap-immobilized on this composite gel fiber. The immobilization process wassimple and the resultant immobilized biocatalysts on the gel fiber were easy tohandle. It is considered that the biocatalysts are physically entrapped amongthe gel networks and distribute throughout the gel fiber. The gel fiber wasstable in phosphate buffer solution, electrolyte solution and organic solvent,because the gel formation was due to coordination interaction between celluloseand transition metal. Therefore, it can be applicable as a support for abiotransformation in various reaction media. We examined some enzyme reactionsand biotransformation using the immobilized biocatalysts on this gel fiber andevaluated this immobilization matrix in the reactions compared to the resultsobtained by the other immobilization method. The immobilized biocatalyst showedstable activity for repeated cycles and over a long period of time. Moreover,continuous reaction could be carried out in a column reactor packed with thisimmobilized biocatalyst.  相似文献   

5.
Whey is a byproduct of the dairy industry, which has prospects of using as a source for production of various valuable compounds. The lactose present in whey is considered as an environmental pollutant and its utilization for enzyme and fuel production, may be effective for whey bioremediation. The dairy yeast Kluyveromyces marxianus have the ability to utilize lactose sharply as the major carbon source for the production of the enzyme. Five strains were tested for the production of the β-galactosidase using whey. The maximum β-galactosidase activity of 1.74 IU/mg dry weight was achieved in whey using K. marxianus MTCC 1389. The biocatalyst was further immobilized on chitosan macroparticles and exhibited excellent functional activity at 35 °C. Almost 89 % lactose hydrolysis was attained for concentrated whey (100 g/L) and retained 89 % catalytic activity after 15 cycles of reuse. Finally, β-galactosidase was immobilized on chitosan and Saccharomyces cerevisiae on calcium alginate, and both were used together for the production of ethanol from concentrated whey. Maximal ethanol titer of 28.9 g/L was achieved during fermentation at 35 °C. The conclusions generated by employing two different matrices will be beneficial for the future modeling using engineered S. cerevisiae in scale-up studies.  相似文献   

6.
During alcoholic fermentation, the products build up and can, ultimately, kill the organism due to their effects on the cell’s macromolecular systems. The effects of alcohols on the steady-state kinetic parameters of the model enzyme β-galactosidase were studied. At modest concentrations (0 to 2 M), there was little effect of methanol, ethanol, propanol and butanol on the kinetic constants. However, above these concentrations, each alcohol caused the maximal rate, V max, to fall and the Michaelis constant, K m, to rise. Except in the case of methanol, the chaotropicity of the solute, rather than its precise chemical structure, determined and can, therefore, be used to predict inhibitory activity. Compounds which act as compatible solutes (e.g. glycerol and other polyols) generally reduced enzyme activity in the absence of alcohols at the concentration tested (191 mM). In the case of the ethanol- or propanol-inhibited β-galactosidase, the addition of compatible solutes was unable to restore the enzyme’s kinetic parameters to their uninhibited levels; addition of chaotropic solutes such as urea tended to enhance the effects of these alcohols. It is possible that the compatible solutes caused excessive rigidification of the enzyme’s structure, whereas the alcohols disrupt the tertiary and quaternary structure of the protein. From the point of view of protecting enzyme activity, it may be unwise to add compatible solutes in the early stages of industrial fermentations; however, there may be benefits as the alcohol concentration increases.  相似文献   

7.
The synthesis of polystyrene nanoparticles through microemulsion polymerization is presented as an undergraduate advanced organic laboratory exercise. The resultant polymers molecular weight and particle size are studied as a function of monomer and initiator concentration. A comparison of cationic vs. anionic surfactants, and their effects on the polymer produced through microemulsion polymerization are also investigated. A direct relationship is observed between molecular weight and monomer concentration. A direct relationship is also found for the particle size of the latex produced. An inverse relationship is observed for molecular weight and particle size as the initiator concentration was raised. Comparison of molecular weight and latex size for cationic and anionic surfactants demonstrates that the anionic surfactant produces both a higher molecular weight and a larger latex size over the entire monomer and initiator concentration ranges.  相似文献   

8.
Copper chromium oxide (CuCrO2) nanoparticles were synthesized by sol–gel method. The effect of annealing temperature, duration of heat treatment and metallic ion concentration in precursor solution on the structural properties of the nanoparticles was investigated. The delafossite structure of CuCrO2 powder was confirmed by X-ray diffractometer. It was found that the crystallite sizes as well as the size of the nanoparticles increased with annealing temperature and duration of heat treatment but decreased with metallic ion concentration. Nanoparticles’ size was obtained using particle size analyzer. The synthesized CuCrO2 nanoparticles with 0.7 M metallic ion concentration have the lowest crystallite and particle sizes with a narrow size distribution in the range of 13.5–15.6 nm. In the presence of this metallic ion concentration, we could also produce single crystal CuCrO2 nanoparticles. Moreover, the CuCrO2 nanoparticles exhibit a large optical band gap that increases with metallic ion concentration. The optical band gap of the nanoparticles fabricated with 0.7 M metallic ion concentration in precursor solution is about 3.99 eV.  相似文献   

9.
A gel type disperse polystyrene/divinylbenzene (DVB) copolymer was successfully prepared in hydrocarbon via ‘living dispersion polymerization (LDP)’ method. Characterization of the dispersed polymers was performed by a combination of size-exclusion chromatographic and transmission electron microscopic analyses. Poly(t-butylstyryl)lithium with 3,5 × 104 g/mol of molecular weight was used as a steric stabilizing moiety in the living dispersion polymerization. The particle size of the dispersed polymers was able to be controlled by both the mole ratio of the concentration of poly(t-butylstyryl)lithium to n-butyllithium and the amount of monomer to over 2 μm.  相似文献   

10.
Single-stage polymerization recently proposed for producing micron-sized polymer particles in aqueous media by Gu, Inukai and Konno (2002) was carried out under the control of agitation with styrene monomer, an amphoteric initiator, 2,2′-azobis [N-(2-carboxyethyl)-2-methylpropionamidine] tetrahydrate and a pH buffer NH3/NH4Cl at a monomer concentration of 1.1 kmol/m3 H2O, an initiator concentration of 10 mol/m3 H2O and a buffer concentration of [NH3] = [NH4Cl] = 10 mol/m3 H2O. In the polymerizations, impeller speed was ranged from 300 to 500 rpm to satisfy complete dispersion of the monomer phase and not to introduce the gas phase from the free surface. Polymerization experiments under steady agitation indicated that impeller speed was an important factor for size distribution of polymer particles. An increase in impeller speed promoted particle coagulation during the polymerization to enlarge the average size of polymer particles but widen the size distribution. To produce polymer particles with narrow size distribution, stepwise reduction in impeller speed was examined in the polymerization experiments. It was demonstrated that this method was more effective than the steady agitation. The impeller speed reduction could produce highly monodisperse particles with an average size of 2 μm and a coefficient of variation of size distributions of 2.2% that was much smaller than typical monodispersity criterion of 10%.  相似文献   

11.
This article presents a detailed study on the conditions for achieving a stable biocatalyst to be used in the production of ethanol from starch. Different pellets were used depending on which characteristic of the biocatalyst was being studied: (a) Saccharomyces cerevisiae entrapped in pectin or calcium alginate gel particles; (b) silica containing immobilized glucoamylase entrapped in pectin gel particles; or (c) pectin gel particles, with the silicaenzyme derivative and yeast coimmobilized. The influence of several variables on the mechanical resistance of the particle, on the viability of the microorganism, and on the rate of substrate hydrolysis was studied with biocatalyst. The best conditions found were 6% pectin gel, 2-mm particle diameter, and curein 0.2 M CaCl2·2H2O/60 mM acetate buffer, pH 4.2, for gel preparation; and 6.0 g/L of CaCl2·2H2O in the fermentation medium. Biocatalyst (c) was successfully tested for the production of ethanol from liquefield manioc flour syrup.  相似文献   

12.
The sol-gel transition of aqueous barley β-glucan solutions which undergo gelation with ageing has been studied by conventional bulk rheology, phase contrast microscopy and particle tracking microrheology. Characterisation of the primary structure of the β-glucan isolate was carried out by enzymic methods and HPLC. The Brownian diffusion of fluorescent microspheres (0.75 μm diameter, carboxylate-coated particles) was used to probe the spatial mechanical properties of the gelling systems at the scale of microns; the potential use of passive particle tracking to study biopolymer gelling systems that present spatial heterogeneities is thus explored. For the β-glucan gels cured at 25°C both microrheology and bulk rheology revealed that with increasing the polysaccharide concentration the gelation time decreased, while the gelation rate and gel strength of the barley β-glucan gels increased. The particle tracking method had higher sensitivity and could map molecular ordering and structural heterogeneities in the evolving polysaccharide network at a micro-level. That is, different size pores were generated upon ageing with regions of depleted or less amount of β-glucan molecules. Furthermore, this method could detect changes in the fine structure of the system before such events can be registered by bulk rheological measurements; i.e. microheterogeneity and aggregation of β-glucan chains were revealed by particle tracking at earlier temporal stages of the experiment.  相似文献   

13.
The rheological behavior of silica/kappa-carrageenan nanocomposites has been investigated as a function of silica particle size and load. The addition of silica nanoparticles was observed to invariably impair the gelation process, as viewed by the reduction of gel strength and decrease of gelation and melting temperatures. This weakening effect is seen, for the lowest particle size, to become slightly more marked as silica concentration (or load) is increased and at the lowest load as particle size is increased. These results suggest that, under these conditions, the particles act as physical barriers to polysaccharide chain aggregation and, hence, gelation. However, for larger particle sizes and higher loads, gel strength does not weaken with size or concentration but, rather, becomes relatively stronger for intermediate particles sizes, or remains unchanged for the largest particles, as a function of load. This indicates that larger particles in higher number do not seem to increasingly disrupt the gel, as expected, but rather promote the formation of stable gel network of intermediate strength. The possibility of this being caused by the larger negative surface charge found for the larger particles is discussed. This may impede further approximation of neighboring particles thus leaving enough inter-particle space for gel formation, taking advantage of a high local polysaccharide concentration due to the higher total space occupied by large particles at higher loads.  相似文献   

14.
Abstract

Here-in is reported a general method of correction for imperfect resolution in the chromatography of particle suspensions. It overcomes most of the limitations of previously reported methods. A non-linear particle diameter - retention volume calibration curve and a generalised spreading function are considered. Moment equations are developed for two types of general detectors; the first type includes a refractive index detector and a turbidity detector with Rayleigh scattering while the second type includes a tubidity detector with Mie scattering. The moment equations were applied to the analysis of chromatograms of narrow Dow polystyrene latices measured by size exclusion chromatography.  相似文献   

15.
Viscoelastic properties of heat-set whey protein emulsion gels containing active filler (protein-covered droplets) and inactive filler (surfactant-covered droplets) have been investigated at small and large deformations using a controlled stress rheometer. Data are reported as a function of protein concentration, oil volume fraction, and average emulsion droplet size. The active filler enhances the gel strength, whereas the inactive filler reduces the gel strength. The higher the elastic modulus of the protein gel matrix, the less the effect of the active filler, but the greater the effect of the inactive filler (and vice versa). Higher oil volume fraction and reduced particle size both intensify the effect of the filler. The large deformation behaviour of a heat-set protein gel or a heat-set emulsion gel containing up to 20 vol% oil is entropic in character, whereas an emulsion gel of higher filler content behaves more like a typical enthalpic particle gel.  相似文献   

16.
The recently developed centrifugal impeller is examined to investigate the solid–liquid mixing in a mechanically agitated contactor. Using the sample withdrawal method, the effects of impeller geometrical parameters, impeller rotational speed (200–700 rpm), solid particle size (500–1100 µm), and solid loading (2–10 vol%) on the degree of homogeneity are studied. The axial and the radial solid concentration profiles and the minimum impeller speed for the complete homogenization are also determined. In comparison with a widely used propeller impeller, considerably higher homogeneity values in lower impeller speeds are obtained (90% homogeneity against 16% homogeneity at 200 rpm at the same conditions). Having also lower power consumption makes this a superior impeller in solid–liquid mixing processes especially in shear-sensitive systems.   相似文献   

17.
The translation of a charged, elongated cylindrical nanoparticle along the axis of a nanopore driven by an imposed axial salt concentration gradient is investigated using a continuum theory, which consists of the ionic mass conservation equations for the ionic concentrations, the Poisson equation for the electric potential in the solution, and the modified Stokes equations for the hydrodynamic field. The diffusiophoretic motion is driven by the induced electrophoresis and chemiphoresis. The former is driven by the generated overall electric field arising from the difference in the ionic diffusivities and the double layer polarization, while the latter is generated by the induced osmotic pressure gradient around the charged particle. The induced diffusiophoretic motion is investigated as functions of the imposed salt concentration gradient, the ratio of the particle’s radius to the double layer thickness, the cylinder’s aspect ratio (length/radius), the ratio of the nanopore size to the particle size, the surface charge densities of the nanoparticle and the nanopore, and the type of the salt used. The induced diffusiophoretic motion of a nanorod in an uncharged nanopore is mainly governed by the induced electrophoresis, driven by the induced electric field arising from the double layer polarization. The induced particle motion is driven by the induced electroosmotic flow, if the charges of the nanorod and nanopore wall have the same sign.  相似文献   

18.
Abstract

Hydrogel, a commercially available column packing, has been evaluated for high speed aqueous gel permeation chromatography. The commercial material designated as < 44μ particle size was classified into narrow particle size ranges using a sonic sifter. The pore volume was found to be independent of particle size. Efficiency was not found to be dependent upon particle size when these classified materials were dry packed. The application of Hydrogel to determine molecular weight distribution of a variety of water-soluble polymers was examined.  相似文献   

19.
《Tetrahedron: Asymmetry》2007,18(15):1799-1803
A short-chain alcohol dehydrogenase (YMR226c) from Saccharomyces cerevisiae was cloned and expressed in Escherichia coli, and the encoded protein was purified. The activity and enantioselectivity of this recombinant enzyme were evaluated with a series of ketones. The alcohol dehydrogenase (YMR226c) was found to effectively catalyze the enantioselective reductions of aryl-substituted acetophenones, α-chloroacetophenones, aliphatic ketones, and α- and β-ketoesters. While the enantioselectivity for the reduction of β-ketoesters was moderate, the acetophenone derivatives, aromatic α-ketoesters, some substituted α-chloroacetophenones, and aliphatic ketones were reduced to the corresponding chiral alcohols with excellent enantioselectivity. The enantiopreference of this enzyme generally followed Prelog’s rule for the simple ketones. The ester functionality played some role in determining the enzyme’s enantiopreference for the reduction of α- and β-ketoesters. The present study serves as a valuable guidance for the future applications of this versatile biocatalyst.  相似文献   

20.
Effects of monomer (AM) concentration, monomer/crosslinker (AM/MBAM) ratio and salt concentration on the thermal behavior of precursor gel and the properties of BeO nanopowder synthesized by polyacrylamide gel method were investigated. The decomposition process of precursor gel was also studied. The decomposition process of precursor gel is that, first, the extraction of free and crystallized water, and then the thermal degradation of polymeric network under temperature higher than 600 °C, final, the decomposition of nanoscale beryllium sulfate to BeO nanopowder. As the monomer concentration increases, the calcination temperature of precursor gel decreases due to more compact network structure of gel and thus smaller size of salt in nanocaves in gel. The average particle size of nanopowder reduces correspondingly. The AM/MBAM ratio also has significant effect on the thermal behavior of precursor gel and the average particle size of product. When the ratio of AM to MBAM is 6, the calcination temperature of precursor gel is the lowest, the average particle size of powders is the smallest, because the network structures of gel is the tightest and thus the sizes of salts in precursor gels are the smallest. As the AM/MBAM ratio deviates from this value, the network structures of gel becomes looser and thus the size of salt in precursor gel becomes larger, so the calcination temperature increases and the average particle size of powders becomes larger certainly. For the same reason, both the calcination temperature and the average particle size of powders increases with increasing the salt concentration. The synthesis conditions have no effect on the particle size distribution of the final product due to the natural random distribution of porosity in gel.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号