首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A coupler is proposed to interface a hybrid dielectric-loaded plasmonic waveguide (HDLPW) with a silicon photonic slab waveguide. The HDLPW is firstly designed and optimized to attain the best tradeoff between the mode confinement and the propagation distance. The designed coupler is inspired from the taper configuration and numerically modeled through finite-difference time-domain (FDTD) simulation. The results demonstrate that a high confinement and low loss of the energy is achieved from a silicon photonic slab waveguide into the dielectric slot of area 50×200 nm2 in the HDLPW. The transmission attained through the coupler with a compact size of 400 nm is found to be as high as 80% (1 dB). Further, the planar nature of taper configuration makes the coupler easy to fabricate using the state-of-the-art CMOS facilities. The proposed coupler is useful in enabling the integration between photonic and hybrid plasmonic waveguides and thus realizing on-chip hybrid integrated circuits.  相似文献   

2.
The design of a vertical directional coupler between a three-dimensional plasmonic slot waveguide and a silicon waveguide is theoretically investigated in detail. It consists of two steps: the design of isolated plasmonic slot waveguide and silicon waveguide and the determination of the gap between the two waveguides and the length of a coupling region. The designed structure transfers 70.8% of the power carried by the silicon waveguide mode to the plasmonic slot waveguide mode when the gap is 150 nm and the coupling length is 2.14 μm. The wavelength dependence of our vertical directional coupler is also studied. The analysis shows that the amount of the transferred power changes slightly over a very wide wavelength range between 1.40 μm and 1.61 μm. Moreover, if we employ the fabrication technology for silicon photonics, it is quite tolerant to the variation of the length of its coupling section. Finally, the vertical directional coupler is considered for a polarizer.  相似文献   

3.
The silicon-based three-dimensional hybrid long-range plasmonic waveguide not only supports long-range propagation distance (~mm) but also has an ultra-small modal area (~10?2 μm2) at 1.55 μm. Here, we propose a directional coupler for effective coupling from a dielectric slab-waveguide to the hybrid plasmonic waveguide on a silicon platform. Our simulation results show that the coupler is able to excite hybrid long-range plasmonic mode with short coupling length, low insertion loss, and high extinction ratio. With the arm separation of 0.3 μm, the coupling length can be made 5.2 % of the propagation length of the hybrid plasmonic waveguide, while the insertion loss and extinction ratio are ?0.12 and 22.4 dB, respectively. This coupler offers the potential applications in signal routing between the hybrid long-range plasmonic waveguide and dielectric waveguide in the photonic integrated circuits.  相似文献   

4.
Numerical solutions are obtained for the proposed novel hybrid terahertz plasmonic waveguide structure, namely the silicon metal silicon (SMS) waveguide. It is shown that the SMS waveguide can overcome the diffraction limit while still maintaining a sizeable propagation length. The geometric dependence of the mode characteristics of this structure is analyzed in detail, showing strong confinement and low loss with propagation lengths exceeding 14 mm at normalized mode areas of 1.72 × 10−2. By using the FEM method (Comsol), the guiding properties of the hybrid terahertz surface plasmon polariton (HTSPP) waveguide are numerically analyzed at the THz frequency, and a combination of double-structured comparisons of the best features of the terahertz plasmonic waveguide is made. Depending on the height used and how the mode confinement is measured, various modal designs, such as double microwire structures, are developed. The structures indicate that we verified the possibility of low attenuation loss of hybrid THz plasmonics propagation. The effective mode area Aeff, energy distribution, and propagation length Lp versus height for waveguides with Si microwire and SiO2 are shown. The numerical calculation results reveal a potential for use in applications such as optical force in trapping and transporting biomolecules, and in high-density integrated circuits.  相似文献   

5.
In this work we introduce a symmetric waveguide intersection in photonic crystal structures, which passes the optical power entering from each one of its four ports, directly to the forward port. This junction allows designers to easier and more efficient design of photonic integrated circuits (PICs) and to create bridge-junctions in a 13.3 μm2 area with just one linear material in its construction. The minimum pass to stop contrast ratio is 26 db with an 18.1 nm bandwidth for contrast ratio over 15 db. Conformal finite difference time domain (CFDTD) method has been used to analysis the system and numerically demonstrates its working.  相似文献   

6.
The SOI based waveguide devices are found to be highly polarization sensitive. Unwanted polarization excitations can be attenuated by integrating a TE- or TM-pass polarizer. A large attenuation of TM-polarized light has been observed when a thin film of metal is coated on the top of silicon rib waveguide, while TE-polarized light remains almost unaffected. The attenuation of TM-polarized light is attributed to the plasmonic absorption of the evanescent field in the metal cladding. Typically, with an Al cladding of thickness ~ 100 nm and a length of 1 mm on top of a single-mode (λ  1550 nm) SOI rib waveguide structure, TE vs TM extinction ratio of ~ 15 dB has been obtained. Integrating such waveguide polarizers in a directional coupler and MZI based DWDM channel interleaver, we have also achieved an improvement in polarization extinction by ~ 15 dB.  相似文献   

7.
In this paper, the design and analysis of an ultracompact coupler based on a hybrid silicon plasmonic waveguide (HSPW) is proposed and its coupling and crosstalk characteristics have been theoretically investigated for the development of optical interconnects that can be realized using well-established complementary metal-oxide-semiconductor-compatible fabrication techniques. To determine the minimum horizontal separation distance and efficient coupling length for the designed coupler, the symmetric and antisymmetric supermodes are obtained and their characteristics are studied at a wavelength of 1.55 μm. Efficient light coupling is exhibited by the HSPW coupler with 75 % of power transfer between the two HSPWs with ultrashort coupling length of 2.14 μm when the separation distance is 50 nm. Further, it is shown that the crosstalk is significantly reduced with the insertion of metallic strip between the two HSPWs for realizing highly dense integrated plasmonic circuits.  相似文献   

8.
9.
To investigate light coupling between a long range surface plasmon polariton (LRSPP) waveguide and a conventional integrated optical component, a hybrid vertical directional coupler consisting of a LRSPP waveguides and a dielectric waveguide is investigated and fabricated. In the proposed coupler the dielectric waveguide and LRSPP waveguide are vertically configured for dense integration and strong coupling. The characteristics of the even and odd super-modes of the coupler are also analyzed to design the device. The fabricated device exhibits damped sinusoidal behavior along the coupling length due to propagation loss of the LRSPP waveguide. The maximum power transfer of 86% from the LRSPP waveguide to the dielectric waveguide is achieved at the coupling length of 600 μm. The measured characteristics of the device are in relatively good agreement with a theoretical analysis.  相似文献   

10.
Li Q  Song Y  Zhou G  Su Y  Qiu M 《Optics letters》2010,35(19):3153-3155
Asymmetric directional coupling between a hybrid plasmonic waveguide with subwavelength field confinement and a conventional dielectric waveguide is investigated. The proposed hybrid coupler features short coupling length, high coupling efficiency, high extinction ratio, and low insertion loss; it can also be integrated into a silicon-based platform. This coupler can be potentially adopted for signal routing between plasmonic waveguides and dielectric waveguides in photonic integrated circuits. Furthermore, it can be exploited to efficiently excite hybrid plasmonic modes with conventional dielectric modes.  相似文献   

11.
A polymer/silica hybrid 2×2 directional coupler (DC) Mach–Zehnder interferometer (MZI) thermo-optic (TO) switch is designed and carefully fabricated. Because of larger thermal conductivity relative to the polymer, silica is utilized as bottom cladding for accelerating heat release. The fabricated TO switch with polymer/silica hybrid structure exhibits low power consumption, less than 7.2 mW, fast rise time of about 106 μs and fast fall time of about 93 μs. This response time is reduced by 40% compared to that of the TO switch with polymer waveguide.  相似文献   

12.
An ultrasmall silicon periodic dielectric waveguides-based multimode interference all-optical logic gate has been proposed. The device consists of three 205 nm wide single-mode input waveguides, a 1.1 μm wide and 5.5 μm long multimode interference waveguide, and three 205 nm wide single-mode output waveguides. The total length and width of the device are 13.7 μm and 3.2 μm, respectively. By changing the states of the input optical signals and/or control signals launched into the device, multifunctional logic functions including OR, NAND, NOR, and NOT gates are performed, and each logic function can be realized at a specific output waveguide in accordance with the launched control signals. The ultrasmall multifunctional logic device has potential applications in high density photonic integrated circuits.  相似文献   

13.
A novel device with two parallel ridge-width varied distributed feedback (DFB) lasers integrated monolithically with Y-branch waveguide coupler was fabricated by means of butt-joint regrowth. A 22 GHz self-pulsation tuning range has been achieved by adjusting independently the driving currents of the two DFB lasers sections. 38.4 GHz all-optical clock recovery has been demonstrated for the first time using this device.  相似文献   

14.
This paper reports on a novel design for a tunable filter and plasmonic sensor based on the metal–insulator–metal waveguide with a nanocavity resonator. Simulation results show that as a one-channel filter, the resonance wavelengths show a linear red-shift with an increase in nanocavity length with a slope of 1742 nm/μm and a nonlinear blue-shift with an increase in nanocavity width, respectively. A two-channel filter can be realized using two nanocavities and the arrangement of the two nanocavities with respect to the waveguide and the value of the distance between the nanocavities has only a marginal effect on the filter notch wavelength. Finally, both in-slit and out-slit refractive index plasmonic sensors are investigated with a sensitivity of 710 nm/RIU and 250 nm/RIU, respectively.  相似文献   

15.
In this paper, we have investigated the characteristics of an asymmetric shaped Fano line in a metal–insulator–metal (MIM) plasmonic waveguide side coupled to two resonating stub structures. The spectral properties of Fano resonance are quite distinct due to the destructive interference between a two propagating plasmon modes. Two structural parameters are carefully adjusted: physical separation between both the resonating stubs and length of resonating stubs. By tailoring the separation between both the resonating structures, coupling between both the plasmon modes is controlled, and hence asymmetric nature of Fano line can be shaped accordingly. Resonance condition of Fano line can be tuned by scaling the length of stubs. A strong red shift in resonating wavelength with varying degree of asymmetry is observed, when length of resonating structures is increased. The sharp resonant peak, due to an asymmetric shaped Fano resonance is generally accompanied by large dispersion that results in reduction of group velocity of light near Fano resonance. By controlling the coupling between resonating stub, or by scaling the length of lower resonating stub, large value of group index (ng = 75) and delay bandwidth product (DBP = 0.2533) is obtained. The structure can be modified to suit different applications in optical buffers, optical switches and nonlinear optics devices.  相似文献   

16.
An optimal design of a slot waveguide is presented for realizing an ultrafast optical modulator based on a 220 nm silicon wafer technology. The recipe is to maximize the confinement and interaction between optical power supported by the waveguide and electric field applied through metallic electrodes. As height of waveguide is fixed at 220 nm, the waveguide and slot width are optimized to maximize the confinement factor of optical power. Moreover, metal electrodes tend to make the waveguide lossy, their optimal placement is calculated to reduce the optical loss and enhance the voltage per unit width in the slot. Performance of an optimally designed slot waveguide with metal electrodes as ultrafast modulator is also discussed.  相似文献   

17.
A simple broadband T-shaped waveguide branch in photonic crystals is constructed only by introducing three dielectric rods into the waveguide channels near branch region. Numerical results indicate that the bandwidth of high transmission (the total transmittance is larger than 95%) is over 415 nm centered at 1550 nm. Owing to its simple structure and broad enough bandwidth, this waveguide branch is expected to be applied to highly dense photonic integrated circuits.  相似文献   

18.
Shuo Liu  Shu-Guang Li  Xing-Ping Zhu 《Optik》2012,123(20):1858-1861
A novel kind of polarization splitter in dual-core elliptical holes hybrid photonic crystal fiber is proposed. Numerical results show that the splitter can reach small coupling length ratio of 0.5, for wavelength from 1.15 μm to 1.9 μm. At wavelength 1.55 μm, the extinction ratio can achieve ?64 dB and the 1.92-mm-long splitter is suggested to achieve extinction ratio better than ?10 dB, a bandwidth of 150 nm. The fiber has small coupling length ratio, small coupling length and high extinction ratio and it is more suitable for fabricating polarization splitter.  相似文献   

19.
Tingting Tang  Wenli Liu  Xiujun He  Xiuying Gao 《Optik》2012,123(12):1112-1114
A compact polarization splitter (PS) with left-handed material (LHM) sandwiched between two right-handed material (RHM) waveguides of a directional coupler (DC) is proposed. Its operation is by setting the coupling length of TM polarization be half that of TE polarization. Theoretic analysis exhibits that the PS with a very small size of 138.4 μm × 18.6 μm can be realized due to the inclusion of LHM even when the RHM with small birefringence is used.  相似文献   

20.
An organic/inorganic hybrid 2 × 2 directional coupler (DC) Mach–Zehnder interferometer (MZI) thermo-optic (TO) switch was successfully designed and fabricated using simple direct ultraviolet photolithography process. The hybrid organic/inorganic waveguide structure includes poly-methyl-methacrylate-glycidyl-methacrylate (P(MMA-GMA)), SU-8 2005 and silica as core, upper cladding and under cladding, respectively. Device optimization and simulation were performed to decrease radiation loss and leakage loss, quicken response time and cut down power consumption. Measurements of the fabricated devices at 1550 nm wavelength result in a switching power of 7.2 mW, a response time of ∼100 μs, and crosstalk of −22.8 and −26.5 dB under cross state and bar state, respectively. Besides, the driving-noise-tolerance characteristics of this device were experimentally investigated by directly imposing a generated tunable noise on the pure driving signal (4 Vpp) and the minimum extinction ratio is larger than 18 dB under a noise level of 2.5 Vpp. The effect of noise on extinction ratio was found decreased with the increase of noise frequency.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号