首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Five different chemical pretreatments, using dilute sulfuric acid, sodium hydroxide, hydrogen peroxide and sodium hydroxide, peroxymonosulfate, and acetic acid, were applied to aspen thermomechanical fibers. The pretreated fibers were submitted to enzymatic hydrolysis and the liberated glucose was monitored. High glucose concentrations were observed for the peroxymonosulfate and the acetic acid pretreated samples. Glucose concentrations greater than 25 g/L were obtained in these cases. This corresponds to conversions on the order of 90% of the pretreated substrate glucose content.  相似文献   

2.
A preliminary process design for dilute sulfuric acid pretreatment of aspen wood chips in order to obtain fermentable sugars has been prepared and subjected to an economic evaluation. The process design was prepared according to experimental data on the kinetics of dilute sulfuric acid prehydrolysis and particle size effects obtained in this study and our previous work. The initial economic evaluation shows woodchips are 56% of the cost of production, whereas the reactor is only 4%, and the comminution operation is just under 10%, indicating that the process economics are extremely vulnerable to feedstock costs and are thus yield-sensitive. Although chances for major cost improvements by modification of the reactor design and finding alternatives to dry milling of aspen chips to small (20–80 mesh) particles needed for acid penetration and enzymatic saccharification are not great, design improvements of the process will necessitate development of a cheaper acid resistant pretreatment reactor and a less energy intensive comminution system. Experimental results on effects of particle size on the dilute acid pretreatment design are presented.  相似文献   

3.
Steam treatment of an industrial process stream, denoted starch-free wheat fiber, was investigated to improve the formation of monomeric sugars in subsequent enzymatic hydrolysis for further bioconversion into ethanol. The solid fraction in the process stream, derived from a combined starch and ethanol factory, was rich in arabinose (21.1%), xylose (30.1%), and glucose (18.6%), in the form of polysaccharides. Various conditions of steam pretreatment (170–220°C for 5–30 min) were evaluated, and their effect was assessed by enzymatic hydrolysis with 2 g of Celluclast + Ultraflo mixture/ 100 g of starch-free fiber (SFF) slurry at 5% dry matter (DM). The highest overall sugar yield for the combined steam pretreatment and enzymatic hydrolysis, 52g/100 g of DM of SFF, corresponding to 74% of the theoretical, was achieved with pretreatment at 190°C for 10 min followed by enzymatic hydrolysis.  相似文献   

4.
Aspen wood substrates with varying degrees of deacetylation, xylan, and lignin removal have been prepared and submitted to enzymatic hydrolysis with a cellulase/hemicellulase preparation for an extended constant period of hydrolysis. Controlled deacetylation has been achieved by treating wood with various alkali metal hydroxide solutions, at various alkali/wood ratios. It has been found that samples with the same extent of deacetylation produce the same sugar yields upon enzymatic hydrolysis. Increased degree of deacetylation increases the yield of sugars obtained from enzymatic hydrolysis, all other compositional parameters held constant. The acetyl group removal is proportional to the stoichiometric relation between added base and wood acetyl content, i.e., the same number of milliequivalents of base/weight of wood remove the same extent of acetyl groups, regardless of the concentration of the base solution. No cation effects are found among Li, Na, and K alkali hydroxide solutions, suggesting that swelling is not as important a parameter as is the removal of the acetyl groups from the xylan backbone in determining the extent of hydrolyzability of the resulting sample.  相似文献   

5.

Douglas-fir sapwood and heartwood were impregnated with SO2 and steam exploded at three severity levels, and the cellulose-rich, water-insoluble component was enzymatically hydrolyzed. The high-severity conditions resulted in near complete solubilization and some degradation of hemicelluloses and a significant improvement in the efficiency of enzymatic digestibility of the cell ulose component. At lower severity, some of the hemicellulose remained un hydrolyzed, and the cellulose present in the pretreated solids was not readily hydrolyzed. The medium-severity pretreatment conditions proved to be a good compromise because they improved the enzymatic hydrolyzability of the solids and resulted in the recovery of the majority of hemicellulose in a monomeric form within the water-soluble stream. Sapwood-derived wood chips exhibited a higher susceptibility to both pretreatment and hydrolysis and, on steam explosion, formed smaller particles as compared to heartwood-derived wood chips.

  相似文献   

6.
Surface properties of chemithermomechanical pulp (CTMP) fibers produced from enzymatically pretreated eucalyptus wood chips prior to refining were investigated by Field Emission Scanning Electron Microscope (FE-SEM), Transmission Electron Microscope (TEM) and X-ray Photoelectron Spectroscopy (XPS). The results showed that in a traditional CTMP refining process most fiber disruptions occur in the middle lamella (ML) leaving behind a significant amount of hydrophobic materials on the resulting fiber surface. However, in a Bio-CTMP refining process, fiber fractures preferentially take place in the primary (P) and secondary 1 (S1) layers or the S1 and secondary 2 (S2) layers, which results in more fibrillation being generated in the subsequent refining thus improving inter-fiber bonding strength and paper strength. XPS chemical composition analysis together with pulp physical strength property showed that the surfaces of Bio-CTMP fibers become enriched with a greater proportion of carbohydrates in comparison with CTMP fiber surface, which supports FE-SEM and TEM observations.  相似文献   

7.
Aspen wood was treated with steam at different time-temperature severity factors. Analysis of the amounts of acids released revealed a relationship between the acidity and the formation of furfural and hydroxymethyl furfural as degradation products from carbohydrates. It is suggested that two concurrent or consecutive mechanisms are responsible for the observed results: a homolytic cleavage and an acid hydrolysis of glucosidic linkages in the polysaccharides. By preimpregnating the wood with alkali, hydrolysis can be eliminated, resulting in a much cleaner depolymerization of the polysaccharides without any further acid-catalyzed degradation. The enzymatic digestibility of the steam-treated wood material for the formation of glucose was compared with that of steam-exploded wood. A more efficient route for glucose production from steam-exploded wood was found as long as the biomass-pretreated material was homogeneous and without shives.  相似文献   

8.
Hydrolysates produced by the pretreatment of aspen wood with liquid hot water were compared with hydrolysates produced using carbonic acid pretreatment. Pretreatment temperatures tested ranged from 180° to 220°C; reaction times were varied between 2.5 and 30.5 min. Under most conditions tested, it was found that the presence of carbonic acid had no discernible effect on the amount of xylose released or concentration of furan compounds, as indicated by ultraviolet-visual absorbance between 270 and 280 nm. Thus, there appears to be little difference in the severity of the pretreatment conditions with or without the presence of carbonic acid. The presence of carbonic acid did, however, result in a hydrolysate with a higher final pH. It is hypothesized that the presence of the carbonic acid during the reaction may have the effect of reducing the accumulation of organic acids in the hydrolysate.  相似文献   

9.
Lignocellulosic biomass is one of the most plentiful and potentially cheapest feedstocks for ethanol production. The cellulose component can be broken down into glucose by enzymes and then converted to ethanol by yeast. However, hydrolysis of cellulose to glucose is difficult, and some form of pretreatment is necessary to increase the susceptibility of cellulose to enzymatic attack. An analysis has been completed of two pretreatment options, dilute sulfuric acid hydrolysis and sulfur dioxide impregnated steam explosion, for two feedstocks, wheat straw and aspen wood chips. Detailed process flow sheets and material and energy balances were used to generate equipment cost information. A technical and economic analysis compared the two feedstocks for each of the two pretreatments. For the same pretreatment, sugars produced from aspen wood hydrolysis were cheaper because of the higher carbohydrate content of aspen, whereas dilute acid pretreatment is favored over acid-catalyzed steam explosion.  相似文献   

10.
Pretreatment of lignocellulosic materials is considered as the rate-limiting step in an economically feasible process for enzymatic hydrolysis of cellulose. Biological delignification techniques have not been developed as intensively as physical and chemical methods. However, white-rot fungi are effective degraders of lignin, and some of them even preferentially remove lignin from wood compared with carbohydrates, and therefore might be suitable for biological pretreatment of lignocellulose. White-rot fungi were cultivated on wheat straw and the residue was hydrolyzed withTrichoderma reesei cellulase. Of nineteen fungi examined,Pleurotus ostreatus, Pleurotus sp. 535,Pycnoporus cinnabarinus 115,Ischnoderma benzoinum 108,Phanerochaete sordida 37,Phlebia radiata 79, and two unidentified fungi were found suitable for pretreatment of straw: the yields of reducing sugars and glucose based on original straw were markedly better compared with uninoculated straw, and these fungi also gave better results thanPolyporus versicolor, a nonselective reference fungus (Cowling, 1961). In the best cases the efficiency of the biological pretreatment was comparable with that of alkali treatment (2% NaOH, 0.4 g NaOH/g straw, 10 min at 115‡C), but the fungal treatment resulted in a higher proportion of glucose in the hydrolyzates. Combined fungal and (strong) alkali treatment did not give better results than alkali or fungal treatment alone. When culture flasks were periodically flushed with oxygen the treatment time could be reduced by about 1 wk with the two fungi,P. sordida 37 andP. cinnabarinus 115, tested. The effect of oxygen in pretreatment reflected the effect of oxygen in the degradation of14C-lignin of poplar wood to14CO2 by these fungi (Hatakka and Uusi-Rauva, 1983). The economic feasibility of the biological pretreatment process is poor due to the long cultivation times needed. The best results were obtained with the longest treatment time studied, which was 5 wk. However, the rapid progress in the field of biological lignin degradation may help to accelerate the delignification process, and also find factors that favor lignin degradation, but suppress the utilization of carbohydrates.  相似文献   

11.
12.
UCT-solvent pretreatment was carried out on woods (beech and akamatsu (pine)) for the enzymatic hydrolysis, in which pretreatment the ground woods were autoclaved with a mixture of water and cyclo-hexanol (37.5% vol% cyclohexanol) having upper critical temperature (UCT: 184°C) on the mutual solubility curve (named as UCT-solvent). Ninety-five and 92% of Klason lignin were removed from beech and akamatsu, respectively, whereas when the woods were autoclaved with water instead of UCT-solvent, only 43 and 18% of Klason lignin was removed from them, respectively. The excellent ability of UCT-solvent for the removal of Klason lignin is owing to that the solvent disturbs re-coupling between the degradation products. The enzymatic hydrolysis of wood was much improved by UCT-solvent pretreatment: the hydrolytic reactivity of akamatsu was enhanced by 2.8 times comparing with when akamatsu was pretreated with water instead of UCT-solvent.  相似文献   

13.
We have studied the cellulose supramolecular structure in pulps obtainedby steam explosion of aspen wood. The pulps were bleached with hydrogenperoxidein an OQP-sequence and characterised by size exclusion chromatography and13C cross polarisation magic angle spinning (CP/MAS)NMR-spectroscopy. With CP/MAS-NMR-spectroscopy and chemometrics we were able toseparate the supramolecular structural changes taking place during steamexplosion into two independent processes. One process was related to the extentof processing and showed degradation and dissolution of cellulose,hemicelluloseand lignin accompanied by an increase in cellulose content. The second processwas displayed by pulps having molecular weights below approximately 100000 andwas interpreted as showing the removal of dislocations and an increase incrystalline and/or paracrystalline cellulose in the cellulose fibrils.  相似文献   

14.
The wet oxidation pretreatment (water, oxygen, elevated temperature, and pressure) of softwood (Picea abies) was investigated for enhancing enzymatic hydrolysis. The pretreatment was preliminarily optimized. Six different combinations of reaction time, temperature, and pH were applied, and the compositions of solid and liquid fractions were analyzed. The solid fraction after wet oxidation contained 58–64% cellulose, 2–16% hemicellulose, and 24–30% lignin. The pretreatment series gave information about the roles of lignin and hemicellulose in the enzymatic hydrolysis. The temperature of the pretreatment, the residual hemicellulose content of the substrate, and the type of the commercial cellulase preparation used were the most important factors affecting the enzymatic hydrolysis. The highest sugar yield in a 72-h hydrolysis, 79% of theoretical, was obtained using a pretreatment of 200°C for 10 min at neutral pH.  相似文献   

15.
Among the available agricultural byproducts, corn stover, with its yearly production of 10 million t (dry basis), is the most abundant promising raw material for fuel ethanol production in Hungary. In the United States, more than 216 million to fcorn stover is produced annually, of which a portion also could possibly be collected for conversion to ethanol. However, a network of lignin and hemicellulose protects cellulose, which is the major source of fermentable sugars in corn stover (approx 40% of the dry matter [DM]). Steam pretreatment removes the major part of the hemicellulose from the solid material and makes the cellulose more susceptible to enzymatic digestion. We studied 12 different combinations of reaction temperature, time, and pH during steam pretreatment. The best conditions (200°C, 5 min, 2% H2SO4) increased the enzymatic conversion (from cellulose to glucose) of corn stover more then four times, compared to untreated material. However, steam pretreatment at 190°C for 5 min with 2% sulfuric acid resulted in the highest overall yield of sugars, 56.1 g from 100 g of untreated material (DM), corresponding to 73% of the theoretical. The liquor following steam explosion was fermented using Saccharomyces cerevisiae to investigate the inhibitory effect of the pretreatment. The achieved ethanol yield was slightly higher than that obtained with a reference sugar solution. This demonstrates that baker's yeast could adapt to the pretreated liquor and ferment the glucose to ethanol efficiently.  相似文献   

16.
Efficient hydrolysis of cellulose-to-glucose is critically important in producing fuels and chemicals from renewable feedstocks. Cellulose hydrolysis in aqueous media suffers from slow reaction rates because cellulose is a water-insoluble crystalline biopolymer. The high-crystallinity of cellulose fibrils renders the internal surface of cellulose inaccessible to the hydrolyzing enzymes (cellulases) as well as water. Pretreatment methods, which increase the surface area accessible to water and cellulases are vital to improving the hydrolysis kinetics and conversion of cellulose to glucose. In a novel technique, the microcrystalline cellulose was first subjected to an ionic liquid (IL) treatment and then recovered as essentially amorphous or as a mixture of amorphous and partially crystalline cellulose by rapidly quenching the solution with an antisolvent. Because of their extremely low-volatility, ILs are expected to have minimal environmental impact. Two different ILs, 1-n-butyl-3-methylimidazolium chloride (BMIMC1) and 1-allyl-3-methylimidazolium chloride (AMIMC1) were investigated. Hydrolysis kinetics of the IL-treated cellulose is significantly enhanced. With appropriate selection of IL treatment conditions and enzymes, the initial hydrolysis rates for IL-treated cellulose were up to 90 times greater than those of untreated cellulose. We infer that this drastic improvement in the "overall hydrolysis rates" with IL-treated cellulose is mainly because of a significant enhancement in the kinetics of the "primary hydrolysis step" (conversion of solid cellulose to soluble oligomers), which is the rate-limiting step for untreated cellulose. Thus, with IL-treated cellulose, primary hydrolysis rates increase and become comparable with the rates of inherently faster "secondary hydrolysis" (conversion of soluble oligomers to glucose).  相似文献   

17.
Good enzymatic hydrolysis of steam-exploded Douglas fir wood (SEDW) cannot be achieved owing to the very high lignin content (>40%) that remains associated with this substrate. Thus, in this study, we investigated the use of alkali-oxygen treatment as a posttreatment to delignify SEDW and also considered the enzymatic hydrolyzability of the delignified SEDW. The results showed that under optimized conditions of 15% NaOH, 5% consistency, 110°C, and 3h, approx84% of the lignin in SEDW could be removed. The resulting delignified SEDW had good hydrolyzability, and cellulose-to-glucose conversion yields of over 90 and 100% could be achieved within 48 h with 20 and 40 filter paper units/g of cellulose enzyme loadings, respectively. It was also indicated that severe conditions, such as high NaOH concentration and high temperature, should not be utilized in oxygen delignification of SEDW in order to avoid extensive condensation of lignin and significant degradation of cellulose.  相似文献   

18.
Applied Biochemistry and Biotechnology - The process simulator ASPEN PLUS was used for simulation of an ethanol production process based on enzymatic hydrolysis of lignocellulosic materials. The...  相似文献   

19.
Conifers, which are the most abundant biomass species in Nordic countries, USA, Canada and Russia, exhibit strong resistance towards depolymerization by cellulolytic enzymes. At present, it is still not possible to isolate a single structural feature which would govern the rate and degree of enzymatic hydrolysis. On the other hand, the forest residues alone represent an important potential for biochemical production of biofuels. In this study, the effect of substrate properties on the enzymatic hydrolysis of softwood was studied. Stem wood spruce chips were fractionated by SO2–ethanol–water (SEW) treatment to produce pulps of varying composition by applying different operating conditions. The SEW technology efficiently fractionates different types of lignocellulosic biomass by rapidly dissolving hemicelluloses and lignin. Cellulose remains fully in the solid residue which is then treated by enzymes to release glucose. The differences in enzymatic digestibility of the spruce SEW pulp fibers were interpreted in terms of their chemical and physical characteristics. A strong correlation between the residual lignin content of SEW pulp and enzymatic digestibility was observed whereas cellulose degree of polymerization and hemicellulose content of pulp were not as important. For the pulps containing about 1.5 % (w/w) lignin, 90 % enzymatic digestibility was achieved at 10 FPU enzyme charge and 24 h of hydrolysis time.  相似文献   

20.
In this study, ultrasound-assisted alkaline pretreatment is developed to evaluate the morphological and structural changes that occur during pretreatment of cellulose, and its effect on glucose production via enzymatic hydrolysis. The pretreated samples were characterized using scanning electron microscopy, infrared spectroscopy, and X-ray diffraction to understand the change in surface morphology, crystallinity and the fraction of cellulose Iβ and cellulose II. The combined pretreatment led to a great disruption of cellulose particles along with the formation of large pores and partial fibrillation. The effects of ultrasound irradiation time (2, 4 h), NaOH concentration (1–10 wt%), initial particle size (20–180 μm) and initial degree of polymerization (DP) of cellulose on structural changes and glucose yields were evaluated. The alkaline ultrasonic pretreatment resulted in a significant decrease in particle size of cellulose, besides significantly reducing the treatment time and NaOH concentration required to achieve a low crystallinity of cellulose. More than 2.5 times improvement in glucose yield was observed with 10 wt% NaOH and 4 h of sonication, compared to untreated samples. The glucose yields increased with increase in initial particle size of cellulose, while DP had no effect on glucose yields. The glucose yields exhibited an increasing tendency with increase in cellulose II fraction as a result of combined pretreatment.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号