首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
ρ-Benzoquinone-activated alginate beads were presented as a new carrier for affinity covalent immobilization of glucoamylase enzyme. Evidences of alginate modification were extracted from FT-IR and thermal gravimetric analysis and supported by morphological changes recognized through SEM examination. Factors affecting the modification process such as ρ-benzoquinone (PBQ) concentration, reaction time, reaction temperature, reaction pH and finally alginate concentration, have been studied. Its influence on the amount of coupled PBQ was consequently correlated to the changes of the catalytic activity and the retained activity of immobilized enzyme, the main parameters judging the success of the immobilization process. The immobilized glucoamylase was found kept almost 80% of its native activity giving proof of non-significant substrate, starch, diffusion limitation. The proposed affinity covalent immobilizing technique would rank among the potential strategies for efficient immobilization of glucoamylase enzyme.  相似文献   

2.
The development of the receptor layer of the biosensor for detecting explosive compounds is described. The covalent modification has been chosen for immobilizing E. coli nitroreductase on the gate oxide of the ion-sensitive field effect transistor (ISFET) that is comprised of silicon dioxide. The self-assembled monolayer technique has been used for immobilization. This method assumes the usage of different silanes and spacer molecules for activating the surface of SiO2. Two different immobilization strategies have been compared, one using asymmetric spacers (3-maleimidobenzoic acid N-hydroxysuccinimide ester (MBS) and 4-(4-maleimidophenyl)butyric acid N-hydroxysuccinimide ester (SMPB)) and another using a symmetric glutaric dialdehyde linker both accompanied by appropriate silanes. For the first method, the dependence of functionalization efficiency on silane concentration has been studied. The sufficient density of enzyme molecules on the surface of SiO2 has been achieved at a concentration of silane of 0.0015%. The type of asymmetric linker has no influence on immobilization efficiency. The method implying glutaric dialdehyde results in higher activity of the immobilized enzyme. For this method, the immobilization procedure has been optimized. The method has been adapted for immobilization of E. coli nitroreductase inside the channel of a microfluidic system on the surface of ISFET. For this purpose, (3-aminopropyl)triethoxysilane (APTES) has been changed to the corresponding silatrane, and the concentration of the enzyme has been increased to 30 μg/mL. The optimized procedure has been successfully used to develop a biosensor for detecting explosives.  相似文献   

3.
An amperometric electrode for oxalate determination immobilizing the oxalate oxidase in a mucin/chitosan (muc/chit) gel with glutaraldehyde as crosslinking agent is presented. The effect of muc/chit weight ratio and volume percent (vol.%) of glutaraldehyde was studied. A very low dynamic response was observed in the case of 100% chitosan with 5 vol.% crosslinking agent. The addition of mucin to chitosan for enzyme immobilization resulted in a biosensor with much better performance, concerning to dynamic response, sensitivity, and stability, with 75% of the initial response after two months. The ratio muc/chit 70/30 was considered optimum for the immobilization. A slight crosslinking and the incorporation of mucin largely influences the swelling and diffusion of the analyte; a direct effect of these properties on the calibration slope was found; the hydrophilic environment for the biomolecule also favor the enzymatic activity through a higher enzyme‐substrate interaction.  相似文献   

4.
Conventionally, microbial bioelectrochemical assays have been conducted using immobilized cells on an electrode that is placed in an electrochemical batch cell. In this paper, we describe a developed microfluidic platform with integrated microelectrode arrays for automated bioelectrochemical assays utilizing a new double mediator system to map redox metabolism and screen for genetic modifications in Saccharomyces cerevisiae cells. The function of this new double mediator system based on menadione and osmium redox polymer (PVI-Os) is demonstrated. “Wiring” of S. cerevisiae cells using PVI-Os shows a significant improvement of bioelectrochemical monitoring in a microfluidic environment and functions as an effective immobilization matrix for cells that are not strongly adherent. The function of the developed microfluidic platform is demonstrated using two strains of S. cerevisiae, ENY.WA and its deletion mutant EBY44, which lacks the enzyme phosphoglucose isomerase. The cellular responses to introduced glucose and fructose were recorded for the two S. cerevisiae strains, and the obtained results are compared with previously published work when using an electrochemical batch cell, indicating that microfluidic bioelectrochemical assays employing the menadione–PVI-Os double mediator system provides an effective means to conduct automated microbial assays.
Figure
Microfluidic platform for bioelectrochemical assays using osmium redox polymer “wired” living yeast cells  相似文献   

5.
Amyloglucosidase was immobilized onto granular chicken bone (BIOBONE?) by noncovalent interactions. The amount of activity bound relative to an equal amount of free enzyme was 13.6 ?0.4%. The estimated specific activity for amyloglucosidase decreased from 75.3?0.8 to 43.5 ?9.6 U/mg protein upon immobilization. TheKm value of the bone-immobilized enzyme using glycogen as substrate increased from 3.04?0.38 mg/mL (free) to 9.04? 1.51 mg/mL (immobilized), butKm showed no change upon immobilization when starches were used as substrates. A decrease in Vmax values occurred upon enzyme immobilization for all substrates, but this largely reflected the percentage of enzyme initially bound to the bone. Immobilization also improved enzyme stability in the presence of various additives (e.g., detergent, KC1, and ethanol) or under low or high pH reaction conditions. Bound amyloglucosidase maintained high activity (>90%) following five cycles of continuous use at moderate (23 ?C) and high (55?C) temperatures. Data derived from Lineweaver-Burk and Arrhenius plots indicated that substrate and product diffusion limitation were minimal.  相似文献   

6.
一种简化的重氮化法制备固定化酶的载体合成方法   总被引:2,自引:0,他引:2  
重氮化法是固定化酶时常用的一种方法。用多孔玻璃等无机物作载体时,一般是先用g-氨丙基三乙氧基硅烷与多孔玻璃等载体反应[1,2],生成烷基胺玻璃,然后与对硝基苯酰氯反应,产物经过还原,生成带有芳胺的衍生物,最后进行重氮化。本文通过烷基胺与对氨基苯甲酸反应,直接生成芳胺的衍生物,比常用的方法缩短了一步。通过在新合成的载体上对木瓜蛋白酶进行固定化,研究了固定化条件对酶活力回收的影响,最适固定化条件如下:pH为7.0,时间为6h,酶量为240mg/g载体,并比较了固定化酶和溶液酶的有关性质,考察了固定化酶的操作稳定性。结果表明,用这种方法合成的载体固定化酶,其对热稳定性、操作稳定性及产率都比较理想。  相似文献   

7.
A DNA biosensor was constructed by immobilizing DNA on a glassy carbon (GC) electrode modified with multiwall carbon nanotubes (MWNTs) dispersed in Nafion (DNA/MWNTs/GCE). The DNA-modified electrode exhibited two well-defined oxidation peaks corresponding to the guanine and adenine residues of DNA, respectively. The effects of the adsorption potential, DNA concentration and quantity of MWNTs used for DNA immobilization were investigated, as were the effects of buffer, pH and scan rate on the voltammetric behavior of DNA. Phenol, m-cresol and catechol showed noticeable inhibition towards the response of the electrode due to their interactions with DNA. These findings were used to design biosensors with linear response to these phenolic pollutants.  相似文献   

8.
用磁性壳聚糖微球(磁性CS-M)作载体,用吸附法对辣根过氧化物酶(horseradishperoxidase,简称HRP)进行固定化研究。实验结果表明,磁性固定化酶的活力受壳聚糖浓度、交联剂的用量、乳化剂、载体与酶的比例、pH及固定化时间等因素的影响。  相似文献   

9.
HPD-750树脂是中极性大孔吸附树脂,生物相容性好,机械性能稳定,具有较大的比表面积,可用于固定化酶载体材料。本文以HPD-750大孔树脂为载体固定化果胶酶,研究各因素对固定化酶的影响,并采用正交试验对固定化条件进行优化。结果表明,当pH为4.0、固定化温度为45℃、固定化时间为4h、加酶量为0.16g/mL时,固定化酶活力可达5146U/mg。以HPD-750大孔树脂为载体材料制备的固定化酶相较于游离酶具有更好的酸碱稳定性和热稳定性。在循环使用10次后,酶活力依然保留80%以上;4℃储藏25d之后,其酶活力仍保留60%以上。与D311大孔树脂、聚丙烯酰胺和海藻酸钠微球制备的固定化酶相比,HPD-750大孔树脂固定化酶的活性、操作稳定性、机械稳定性和储存稳定性都较好。该结果说明,HPD-750大孔树脂可作为固定化酶较好的载体材料。  相似文献   

10.
《Tetrahedron: Asymmetry》2007,18(10):1233-1238
The covalent immobilization of the Solanum tuberosum epoxide hydrolase (StEH) was explored using highly activated Sepabeads-epoxy or Glyoxyl-agarose based supports. A Glyoxyl-agarose immobilizate, prepared under optimized experimental conditions, led to a material exhibiting excellent thermal and chemical stability. The key step of this immobilization process was the use of 164 kDa dextran as an additive during immobilization, which prevented the enzyme from inactivation at the high pH (pH 10) necessarily used for performing this immobilization. This afforded a Glyoxyl-agarose-StEH immobilizate with 80% initial enzymatic activity retention and a stabilization factor of at least 300 at 60 °C, as compared to the free enzyme. The high enantio- and regio-selectivity properties of this novel biocatalyst were shown to be nearly identical to those of the free enzyme.  相似文献   

11.
制备了脱乙酰基魔芋葡甘聚糖(d-KGM)的溶胶-凝胶,用红外光谱表征了其脱乙酰基前后的结构转化.探讨了d-KGM溶胶-凝胶的制备条件对其成膜性能及酶固定化的影响.在此基础上将d-KGM用于电极表面葡萄糖氧化酶的固定,制备了相应的葡萄糖传感器,并对传感器的工作条件进行了优化.所制备的传感器灵敏度为240 nA/mmol/L,线性范围为0.1~8 mmol/L,表观米氏常数KM为19.6 mmol/L,稳定性好,寿命长.实验结果表明d-KGM是一种可用于生物传感器中酶固定化的优良材料.  相似文献   

12.
The bioelectrochemical oxidation of two polyaromatic hydrocarbons (PAH): anthracene (ANT) and pyrene (PYR), using horseradish peroxidase (HRP) resulting in the synthesis of photoactive polyaromatic quinones in organic media was studied. The electrochemical generation of hydrogen peroxide was compared with its direct addition in concentrations of up to 0.0012 mol L−1. In addition, three different chemical redox mediators were evaluated: ABTS, thionin and ortho-aminophenol. In a reaction medium containing 30% acetone and ABTS as mediator with a molar ratio mediator/PAH of 1:10, HRP attained the highest level of oxidation of PAH (1 × 10−3 mol L−1): ANT (94%) and PYR (91%), producing 9,10-anthraquinone and mainly 1,2 and 4,5-pyrenequinones, respectively.  相似文献   

13.
There are many parameters that may have influenced the properties of cell during immobilization process. Particularly, the immobilization methods, carrier materials, and enzyme loading amount that have been proved to be important for immobilization process. The physiological responses of microorganisms are depending on the immobilization technique used. Typical alterations to the micro-environment of the immobilized cell involved the altered water activity, presence of ionic charges, cell confinement and modified surface tension. In this study, the graphene oxide was selected as a suitable carrier for immobilization process of recombinant E.coli and adsorption was chosen as an appropriate method to improve the production of engineered thermostable xylanase. High level production of thermostable xylanase by immobilized recombinant cell in the 5 L bioreactor was studied by using optimum research surface methodology (RSM) conditions was studied. The immobilization of E. coli onto nanoparticle matrix manages to improve the cell performance by improving the protein expression, reduced the occurrences of cell lysis as well as improved the plasmid stability of the host cell. Thus, immobilization contributes a physical support for both whole cells as well as enzymes to develop a better operative achievement system for industrialized fields and give rise to the biological advancement existing enzyme for instance xylanase.  相似文献   

14.
With the aim of immobilizing glucose oxidase (GO) for routine determination of glucose, a covalent bond immobilization method on titanium (IV) chloride activated silica supports was used (1). Several parameters were studied in order to optimize the residual activity upon immobilization and during operation. The immobilized enzyme can be reutilized at 25°C for several h a day alternating with storage (4°C) for at least 3,300 h.  相似文献   

15.
Poly(ethylene glycol)(PEG)‐based interpenetrating polymeric network (IPN) hydrogels were prepared for the application of enzyme immobilization. Poly(acrylamide)(PAAm) was chosen as the other network of IPN hydrogel and different concentration of PAAm networks were incorporated inside the PEG hydrogel to improve the mechanical strength and provide functional groups that covalently bind the enzyme. Formation of IPN hydrogels was confirmed by observing the weight per cent gain of hydrogel after incorporation of PAAm network and by attenuated total reflectance/Fourier transform infrared (ATR/FTIR) analysis. Synthesis of IPN hydrogels with higher PAAm content produced more crosslinked hydrogels with lower water content (WC), smaller Mc and mesh size, which resulted in enhanced mechanical properties compared to the PEG hydrogel. The IPN hydrogels exhibited tensile strength between 0.2 and 1.2 MPa while retaining high levels of hydration (70–81% water). For enzyme immobilization, glucose oxidase (GOX) was immobilized to PEG and IPN hydrogel beads. Enzyme activity studies revealed that although all the hydrogels initially had similar enzymatic activity, enzyme‐immobilizing PEG hydrogels lost most of the enzymatic activity within 2 days due to enzyme leaching while IPN hydrogels maintained a maximum 80% of the initial enzymatic activity over a week due to the covalent linkage between the enzyme and amine groups of PAAm. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

16.
The reconstitution of apo enzymes with DNA oligonucleotide-modified heme (protoporphyrin IX) cofactors has been employed as a tool to produce artificial enzymes that can be specifically immobilized at the solid surfaces. To this end, covalent heme-DNA adducts were synthesized and subsequently used in the reconstitution of apo myoglobin (aMb) and apo horseradish peroxidase (aHRP). The reconstitution produced catalytically active enzymes that contained one or two DNA oligomers coupled to the enzyme in the close proximity to the active site. Kinetic studies of these DNA-enzyme conjugates, carried out with two substrates, ABTS and Amplex Red, showed a remarkable increase in peroxidase activity of the DNA-Mb enzymes while a decrease in enzymatic activity was observed for the DNA-HRP enzymes. All DNA-enzyme conjugates were capable of specific binding to a solid support containing complementary DNA oligomers as capture probes. Kinetic analysis of the enzymes immobilized by the DNA-directed immobilization method revealed that the enzymes remained active after hybridization to the capture oligomers. The programmable binding properties enabled by DNA hybridization make such semisynthetic enzyme conjugates useful for a broad range of applications, particularly in biocatalysis, electrochemical sensing, and as building blocks for biomaterials.  相似文献   

17.
The novel di-functional magnetic nanoflowers (DMNF) which had both epoxy groups and hydrophilic catechol as well as phthaloquinone groups capable of covalently coupling of penicillin G acylase (PGA) were characterized by scanning electron microscopy, transmission electron microscope (TEM), vibrating sample magnetometer, N2 adsorption, and so on. The studies showed that DMNF possessed “hierarchical petal” structure of nanosheets had specific saturation magnetization of 39.7 emu/g and average pore diameter of 25.4 nm as well as specific surface area of 17.28 m2/g. For hydrolysis of penicillin G potassium catalyzed by the PGA immobilized on DMNF with enzyme loading of 106 mg/g-support, its apparent activity reached 2,667 U/g, which benefited from the “hierarchical petal” and large pore structure of the magnetic DMNF leading to high enzyme loading and fast diffusion of substrate molecules to the immobilized PGA to reaction. The apparent activity of the immobilized PGA could keep 2,408 U/g (above 90% of its initial activity) after repeating use for 10 cycles. The magnetic immobilized PGA exhibited excellent operational stability due to covalently coupling of the enzyme molecules between the support by covalent interaction of the amino groups of PGA and the reactive groups of epoxy, catechol, and phthaloquinone groups on DMNF. Furthermore, the PGA displayed good acid and alkaline resistance as well as thermal stability by immobilization using DMNF.  相似文献   

18.
微波辐射高效共价固定青霉素酰化酶   总被引:1,自引:0,他引:1  
为提高青霉素酰化酶的共价固定化效率, 在微波辐射条件下将酶蛋白共价固定于介孔泡沫硅(MCFs)的孔道中. 通过正硅酸四乙酯水解缩合制备介孔泡沫硅, 再于微波辅助下将青霉素酰化酶共价固定在其孔道中. 以固定化酶相对活力和活力回收为指标, 考察了加酶量、固定化温度、微波辐射时间等条件对酶固定化效率的影响. 实验结果表明: 当加酶量为60 mg/g, 固定化温度为20 ℃, 微波辐射140 s, 固定化酶相对活力达到178.1%, 表观活力为1191.3 U/g(以湿重计). 与常规方法相比, 微波辅助固定化酶时, 固定化酶相对活力提高34.5%, 固定化时间亦大幅缩短至数分钟, 这为青霉素酰化酶的高效共价固定化提供了一条新的途径.  相似文献   

19.
A simple and inexpensive method for immobilizing alpha-amylase from Bacillus circulans GRS 313 on coconut fiber was developed. The immobilization conditions for highest efficiency were optimized with respect to immobilization pH of 5.5, 30 degrees C, contact time of 4 h, and enzyme to support a ratio of 1:1 containing 0.12 mg/mL of protein. The catalytic properties of the immobilized enzyme were compared with that of the free enzyme. The activity of amylase adsorbed on coconut fiber was 38.7 U/g of fiber at its optimum pH of 5.7 and 48 degrees C, compared with the maximum activity of 40.2 U/mL of free enzyme at the optimum pH of 4.9 and 48 degrees C. The reutilization capacity of the immobilized enzyme was up to three cycles.  相似文献   

20.
Bioelectrochemical properties of Trametes versicolor Laccase (TvL) and Trametes hirsuta Laccase (ThL) immobilized by using polyazetidine prepolymer (PAP) onto multi-walled carbon nanotubes (MWCNTs) screen printed electrode (SPE) surface, have been studied with several redox mediators by cyclic voltammetry (CV). The efficient entrapment of laccase in the PAP layer was confirmed by determination of both kinetic parameters (maximum current and Michaelis–Menten apparent constant) and analytical performances by chronoamperometry. The Laccase-modified MWCNTs electrode provides an effective biosensor for determination of polyphenols and catecholamines in real matrices; performances of the considered biosensors for real samples analysis are also compared and discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号